"vscode:/vscode.git/clone" did not exist on "9088c6359299978390430821c23a2cfd0cb8ffeb"
dummy_pt_objects.py 7.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa

from ..utils import DummyObject, requires_backends


class ModelMixin(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

13
14
15
16
17
18
19
20
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

21
22
23
24
25
26
27

class AutoencoderKL(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

28
29
30
31
32
33
34
35
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

36
37
38
39
40
41
42

class UNet2DConditionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

43
44
45
46
47
48
49
50
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

51
52
53
54
55
56
57

class UNet2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

58
59
60
61
62
63
64
65
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

66
67
68
69
70
71
72

class VQModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

73
74
75
76
77
78
79
80
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

def get_constant_schedule(*args, **kwargs):
    requires_backends(get_constant_schedule, ["torch"])


def get_constant_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_constant_schedule_with_warmup, ["torch"])


def get_cosine_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])


def get_linear_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_linear_schedule_with_warmup, ["torch"])


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])


def get_scheduler(*args, **kwargs):
    requires_backends(get_scheduler, ["torch"])


class DiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

116
117
118
119
120
121
122
123
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

124
125
126
127
128
129
130

class DDIMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

131
132
133
134
135
136
137
138
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

139
140
141
142
143
144
145

class DDPMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

146
147
148
149
150
151
152
153
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

154
155
156
157
158
159
160

class KarrasVePipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

161
162
163
164
165
166
167
168
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

169
170
171
172
173
174
175

class LDMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

176
177
178
179
180
181
182
183
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

184
185
186
187
188
189
190

class PNDMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

191
192
193
194
195
196
197
198
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

199
200
201
202
203
204
205

class ScoreSdeVePipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

206
207
208
209
210
211
212
213
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

214
215
216
217
218
219
220

class DDIMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

221
222
223
224
225
226
227
228
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

229
230
231
232
233
234
235

class DDPMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

236
237
238
239
240
241
242
243
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

244
245
246
247
248
249
250

class KarrasVeScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

251
252
253
254
255
256
257
258
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

259
260
261
262
263
264
265

class PNDMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

266
267
268
269
270
271
272
273
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

274
275
276
277
278
279
280

class SchedulerMixin(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

281
282
283
284
285
286
287
288
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

289
290
291
292
293
294
295

class ScoreSdeVeScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

296
297
298
299
300
301
302
303
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

304
305
306
307
308
309

class EMAModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
310
311
312
313
314
315
316
317

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])