_ 5.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

import tqdm

from ..pipeline_utils import DiffusionPipeline


class PNDM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        noise_scheduler = noise_scheduler.set_format("pt")
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

    def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50):
        # eta corresponds to η in paper and should be between [0, 1]
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

        num_trained_timesteps = self.noise_scheduler.timesteps
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)

        self.unet.to(torch_device)

        # Sample gaussian noise to begin loop
        image = torch.randn(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            generator=generator,
        )
        image = image.to(torch_device)

        seq = list(inference_step_times)
        seq_next = [-1] + list(seq[:-1])
        model = self.unet

        warmup_steps = [len(seq) - (i // 4 + 1) for i in range(3 * 4)]

        ets = []
        prev_image = image
        for i, step_idx in enumerate(warmup_steps):
            i = seq[step_idx]
            j = seq_next[step_idx]

            t = (torch.ones(image.shape[0]) * i)
            t_next = (torch.ones(image.shape[0]) * j)

            residual = model(image.to("cuda"), t.to("cuda"))
            residual = residual.to("cpu")

            image = image.to("cpu")
            image = self.noise_scheduler.transfer(prev_image.to("cpu"), t_list[0], t_list[1], residual)

            if i % 4 == 0:
                ets.append(residual)
                prev_image = image

        for 

        ets = []
        step_idx = len(seq) - 1
        while step_idx >= 0:
            i = seq[step_idx]
            j = seq_next[step_idx]

            t = (torch.ones(image.shape[0]) * i)
            t_next = (torch.ones(image.shape[0]) * j)

            residual = model(image.to("cuda"), t.to("cuda"))
            residual = residual.to("cpu")

            t_list = [t, (t+t_next)/2, t_next]

            ets.append(residual)
            if len(ets) <= 3:
                image = image.to("cpu")
                x_2 = self.noise_scheduler.transfer(image.to("cpu"), t_list[0], t_list[1], residual)

                e_2 = model(x_2.to("cuda"), t_list[1].to("cuda")).to("cpu")
                x_3 = self.noise_scheduler.transfer(image, t_list[0], t_list[1], e_2)
                e_3 = model(x_3.to("cuda"), t_list[1].to("cuda")).to("cpu")
                x_4 = self.noise_scheduler.transfer(image, t_list[0], t_list[2], e_3)
                e_4 = model(x_4.to("cuda"), t_list[2].to("cuda")).to("cpu")
                residual = (1 / 6) * (residual + 2 * e_2 + 2 * e_3 + e_4)
            else:
                residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])

            img_next = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual)
            image = img_next

            step_idx = step_idx - 1

#            if len(prev_noises) in [1, 2]:
#                t = (t + t_next) / 2
#            elif len(prev_noises) == 3:
#                t = t_next / 2

#            if len(prev_noises) == 0:
#                ets.append(residual)
#
#            if len(ets) > 3:
#                residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])
#                step_idx = step_idx - 1
#            elif len(ets) <= 3 and len(prev_noises) == 3:
#                residual = (1 / 6) * (prev_noises[-3] + 2 * prev_noises[-2] + 2 * prev_noises[-1] + residual)
#                prev_noises = []
#                step_idx = step_idx - 1
#            elif len(ets) <= 3 and len(prev_noises) < 3:
#                prev_noises.append(residual)
#                if len(prev_noises) < 2:
#                    t_next = (t + t_next) / 2
#
#            image = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual)

        return image

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"
#        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
            # 1. predict noise residual
#            with torch.no_grad():
#                residual = self.unet(image, inference_step_times[t])
#
            # 2. predict previous mean of image x_t-1
#            pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)
#
            # 3. optionally sample variance
#            variance = 0
#            if eta > 0:
#                noise = torch.randn(image.shape, generator=generator).to(image.device)
#                variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
#
            # 4. set current image to prev_image: x_t -> x_t-1
#            image = pred_prev_image + variance