run.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
import numpy as np
import PIL
import functools

import models
from models import utils as mutils
from models import ncsnv2
from models import ncsnpp
from models import ddpm as ddpm_model
from models import layerspp
from models import layers
from models import normalization

from utils import restore_checkpoint

import sampling
from sde_lib import VESDE, VPSDE, subVPSDE
from sampling import (NoneCorrector, 
                      ReverseDiffusionPredictor, 
                      LangevinCorrector,
                      EulerMaruyamaPredictor, 
                      AncestralSamplingPredictor, 
                      NonePredictor,
                      AnnealedLangevinDynamics)
import datasets
import torch


torch.manual_seed(0)


#class NewVESDE(SDE):
#  def __init__(self, sigma_min=0.01, sigma_max=50, N=1000):
#    """Construct a Variance Exploding SDE.
#
#    Args:
#      sigma_min: smallest sigma.
#      sigma_max: largest sigma.
#      N: number of discretization steps
#    """
#    super().__init__(N)
#    self.sigma_min = sigma_min
#    self.sigma_max = sigma_max
#    self.discrete_sigmas = torch.exp(torch.linspace(np.log(self.sigma_min), np.log(self.sigma_max), N))
#    self.N = N
#
#  @property
#  def T(self):
#    return 1
#
#  def sde(self, x, t):
#    sigma = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
#    drift = torch.zeros_like(x)
#    diffusion = sigma * torch.sqrt(torch.tensor(2 * (np.log(self.sigma_max) - np.log(self.sigma_min)),
#                                                device=t.device))
#    return drift, diffusion
#
#  def marginal_prob(self, x, t):
#    std = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
#    mean = x
#    return mean, std
#
#  def prior_sampling(self, shape):
#    return torch.randn(*shape) * self.sigma_max
#
#  def prior_logp(self, z):
#    shape = z.shape
#    N = np.prod(shape[1:])
#    return -N / 2. * np.log(2 * np.pi * self.sigma_max ** 2) - torch.sum(z ** 2, dim=(1, 2, 3)) / (2 * self.sigma_max ** 2)
#
#  def discretize(self, x, t):
#    """SMLD(NCSN) discretization."""
#    timestep = (t * (self.N - 1) / self.T).long()
#    sigma = self.discrete_sigmas.to(t.device)[timestep]
#    adjacent_sigma = torch.where(timestep == 0, torch.zeros_like(t),
#                                 self.discrete_sigmas[timestep - 1].to(t.device))
#    f = torch.zeros_like(x)
#    G = torch.sqrt(sigma ** 2 - adjacent_sigma ** 2)
#    return f, G


class NewReverseDiffusionPredictor:

  def __init__(self, sde, score_fn, probability_flow=False):
    super().__init__()
    self.sde = sde
    self.probability_flow = probability_flow
    self.score_fn = score_fn

  def discretize(self, x, t):
    timestep = (t * (self.sde.N - 1) / self.sde.T).long()
    sigma = self.sde.discrete_sigmas.to(t.device)[timestep]
    adjacent_sigma = torch.where(timestep == 0, torch.zeros_like(t),
                                 self.sde.discrete_sigmas[timestep - 1].to(t.device))
    f = torch.zeros_like(x)
    G = torch.sqrt(sigma ** 2 - adjacent_sigma ** 2)

    labels = self.sde.marginal_prob(torch.zeros_like(x), t)[1]
    result = self.score_fn(x, labels)

    rev_f = f - G[:, None, None, None] ** 2 * result * (0.5 if self.probability_flow else 1.)
    rev_G = torch.zeros_like(G) if self.probability_flow else G
    return rev_f, rev_G

  def update_fn(self, x, t):
    f, G = self.discretize(x, t)
    z = torch.randn_like(x)
    x_mean = x - f
    x = x_mean + G[:, None, None, None] * z
    return x, x_mean


class NewLangevinCorrector:

  def __init__(self, sde, score_fn, snr, n_steps):
    super().__init__()
    self.sde = sde
    self.score_fn = score_fn
    self.snr = snr
    self.n_steps = n_steps

  def update_fn(self, x, t):
    sde = self.sde
    score_fn = self.score_fn
    n_steps = self.n_steps
    target_snr = self.snr
    if isinstance(sde, VPSDE) or isinstance(sde, subVPSDE):
      timestep = (t * (sde.N - 1) / sde.T).long()
      alpha = sde.alphas.to(t.device)[timestep]
    else:
      alpha = torch.ones_like(t)

    for i in range(n_steps):
      labels = sde.marginal_prob(torch.zeros_like(x), t)[1]
      grad = score_fn(x, labels)
      noise = torch.randn_like(x)
      grad_norm = torch.norm(grad.reshape(grad.shape[0], -1), dim=-1).mean()
      noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
      step_size = (target_snr * noise_norm / grad_norm) ** 2 * 2 * alpha
      x_mean = x + step_size[:, None, None, None] * grad
      x = x_mean + torch.sqrt(step_size * 2)[:, None, None, None] * noise

    return x, x_mean



def save_image(x):
#    image_processed = x.cpu().permute(0, 2, 3, 1)
#    image_processed = (image_processed + 1.0) * 127.5
#    image_processed = image_processed.numpy().astype(np.uint8)
    image_processed = np.clip(x.permute(0, 2, 3, 1).cpu().numpy() * 255, 0, 255).astype(np.uint8)
    image_pil = PIL.Image.fromarray(image_processed[0])

    # 6. save image
    image_pil.save("../images/hey.png")


#x = np.load("cifar10.npy")
#
#save_image(x)
# @title Load the score-based model
sde = 'VESDE' #@param ['VESDE', 'VPSDE', 'subVPSDE'] {"type": "string"}
if sde.lower() == 'vesde':
  from configs.ve import cifar10_ncsnpp_continuous as configs
  ckpt_filename = "exp/ve/cifar10_ncsnpp_continuous/checkpoint_24.pth"
#  from configs.ve import ffhq_ncsnpp_continuous as configs
#  ckpt_filename = "exp/ve/ffhq_1024_ncsnpp_continuous/checkpoint_60.pth"
  config = configs.get_config()  
  config.model.num_scales = 1000
  sde = VESDE(sigma_min=config.model.sigma_min, sigma_max=config.model.sigma_max, N=config.model.num_scales)
  sampling_eps = 1e-5
elif sde.lower() == 'vpsde':
  from configs.vp import cifar10_ddpmpp_continuous as configs  
  ckpt_filename = "exp/vp/cifar10_ddpmpp_continuous/checkpoint_8.pth"
  config = configs.get_config()
  sde = VPSDE(beta_min=config.model.beta_min, beta_max=config.model.beta_max, N=config.model.num_scales)
  sampling_eps = 1e-3
elif sde.lower() == 'subvpsde':
  from configs.subvp import cifar10_ddpmpp_continuous as configs
  ckpt_filename = "exp/subvp/cifar10_ddpmpp_continuous/checkpoint_26.pth"
  config = configs.get_config()
  sde = subVPSDE(beta_min=config.model.beta_min, beta_max=config.model.beta_max, N=config.model.num_scales)
  sampling_eps = 1e-3

batch_size = 1 #@param {"type":"integer"}
config.training.batch_size = batch_size
config.eval.batch_size = batch_size

random_seed = 0 #@param {"type": "integer"}

score_model = mutils.create_model(config)

loaded_state = torch.load(ckpt_filename)
score_model.load_state_dict(loaded_state["model"], strict=False)

inverse_scaler = datasets.get_data_inverse_scaler(config)
predictor = ReverseDiffusionPredictor #@param ["EulerMaruyamaPredictor", "AncestralSamplingPredictor", "ReverseDiffusionPredictor", "None"] {"type": "raw"}
corrector = LangevinCorrector #@param ["LangevinCorrector", "AnnealedLangevinDynamics", "None"] {"type": "raw"}

def image_grid(x):
  size = config.data.image_size
  channels = config.data.num_channels
  img = x.reshape(-1, size, size, channels)
  w = int(np.sqrt(img.shape[0]))
  img = img.reshape((w, w, size, size, channels)).transpose((0, 2, 1, 3, 4)).reshape((w * size, w * size, channels))
  return img

#@title PC sampling
img_size = config.data.image_size
channels = config.data.num_channels
shape = (batch_size, channels, img_size, img_size)
probability_flow = False
snr = 0.16 #@param {"type": "number"}
n_steps =  1#@param {"type": "integer"}


def shared_predictor_update_fn(x, t, sde, model, predictor, probability_flow, continuous):
  """A wrapper that configures and returns the update function of predictors."""
  score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous)
  if predictor is None:
    # Corrector-only sampler
    predictor_obj = NonePredictor(sde, score_fn, probability_flow)
  else:
    predictor_obj = predictor(sde, score_fn, probability_flow)
  return predictor_obj.update_fn(x, t)


def shared_corrector_update_fn(x, t, sde, model, corrector, continuous, snr, n_steps):
  """A wrapper tha configures and returns the update function of correctors."""
  score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous)
  if corrector is None:
    # Predictor-only sampler
    corrector_obj = NoneCorrector(sde, score_fn, snr, n_steps)
  else:
    corrector_obj = corrector(sde, score_fn, snr, n_steps)
  return corrector_obj.update_fn(x, t)


continuous = config.training.continuous


predictor_update_fn = functools.partial(shared_predictor_update_fn,
                                          sde=sde,
                                          predictor=predictor,
                                          probability_flow=probability_flow,
                                          continuous=continuous)

corrector_update_fn = functools.partial(shared_corrector_update_fn,
                                          sde=sde,
                                          corrector=corrector,
                                          continuous=continuous,
                                          snr=snr,
                                          n_steps=n_steps)

device = "cuda"
model = score_model.to(device)
denoise = False

new_corrector = NewLangevinCorrector(sde=sde, score_fn=model, snr=snr, n_steps=n_steps)
new_predictor = NewReverseDiffusionPredictor(sde=sde, score_fn=model)


with torch.no_grad():
    # Initial sample
    x = sde.prior_sampling(shape).to(device)
    timesteps = torch.linspace(sde.T, sampling_eps, sde.N, device=device)

    for i in range(sde.N):
        t = timesteps[i]
        vec_t = torch.ones(shape[0], device=t.device) * t
#        x, x_mean = corrector_update_fn(x, vec_t, model=model)
#        x, x_mean = predictor_update_fn(x, vec_t, model=model)
        x, x_mean = new_corrector.update_fn(x, vec_t)
        x, x_mean = new_predictor.update_fn(x, vec_t)

    x, n = inverse_scaler(x_mean if denoise else x), sde.N * (n_steps + 1)


# for 5
#assert x.abs().sum().cpu().item() - 106114.90625 < 1e-2, "sum wrong"
#assert x.abs().mean().cpu().item() - 34.5426139831543 < 1e-4, "mean wrong"

# for 1000
assert x.abs().sum().cpu().item() - 436.5811 < 1e-2, "sum wrong"
assert x.abs().mean().cpu().item() - 0.1421 < 1e-4, "mean wrong"

save_image(x)