unet_2d_condition.py 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
from dataclasses import dataclass
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21
22

from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
23
from ..utils import BaseOutput, logging
Patrick von Platen's avatar
Patrick von Platen committed
24
from .embeddings import TimestepEmbedding, Timesteps
25
from .unet_2d_blocks import (
26
27
28
29
30
31
32
33
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
34
35


36
37
38
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


39
40
41
42
43
44
45
46
47
48
49
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


Patrick von Platen's avatar
Patrick von Platen committed
50
class UNet2DConditionModel(ModelMixin, ConfigMixin):
Kashif Rasul's avatar
Kashif Rasul committed
51
52
53
54
55
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
56
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    Parameters:
        sample_size (`int`, *optional*): The size of the input sample.
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
    """

82
83
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: int = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
        attention_head_dim: int = 8,
Patrick von Platen's avatar
Patrick von Platen committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    ):
        super().__init__()

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))

        # time
        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
144
                resnet_groups=norm_num_groups,
145
                cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
149
150
151
152
153
154
155
156
157
158
                attn_num_head_channels=attention_head_dim,
                downsample_padding=downsample_padding,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2DCrossAttn(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift="default",
159
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
163
            attn_num_head_channels=attention_head_dim,
            resnet_groups=norm_num_groups,
        )

164
165
166
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
171
172
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
173
174
175
176
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

177
178
179
180
181
182
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
183
184
185
186
187
188
189
190

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
191
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
192
193
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
194
                resnet_groups=norm_num_groups,
195
                cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
196
197
198
199
200
201
202
203
204
205
                attn_num_head_channels=attention_head_dim,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.config.attention_head_dim}"
            )
        if slice_size is not None and slice_size > self.config.attention_head_dim:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.config.attention_head_dim}"
            )

        for block in self.down_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

        self.mid_block.set_attention_slice(slice_size)

        for block in self.up_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

228
229
230
231
232
233
234
235
236
237
238
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for block in self.down_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

        self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

        for block in self.up_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

239
240
241
242
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
246
247
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
248
249
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
250
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
251
252
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
253
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
Kashif Rasul's avatar
Kashif Rasul committed
254
255
256
257
258
259
260
261
262
            encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Patrick von Platen's avatar
Patrick von Platen committed
277
278
279
280
281
282
283
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
284
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
Patrick von Platen's avatar
Patrick von Platen committed
285
286
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
287
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
288

289
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
290
        timesteps = timesteps.expand(sample.shape[0])
291

Patrick von Platen's avatar
Patrick von Platen committed
292
        t_emb = self.time_proj(timesteps)
293
294
295
296
297
298

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        emb = self.time_embedding(t_emb)
Patrick von Platen's avatar
Patrick von Platen committed
299
300
301
302
303
304
305
306
307

        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
                sample, res_samples = downsample_block(
308
309
310
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Patrick von Platen's avatar
Patrick von Platen committed
311
312
313
314
315
316
317
318
319
320
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)

        # 5. up
321
322
323
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
324
325
326
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

327
328
329
330
331
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

Patrick von Platen's avatar
Patrick von Platen committed
332
333
334
335
336
337
            if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
338
                    upsample_size=upsample_size,
Patrick von Platen's avatar
Patrick von Platen committed
339
340
                )
            else:
341
342
343
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
Patrick von Platen's avatar
Patrick von Platen committed
344
        # 6. post-process
345
        sample = self.conv_norm_out(sample)
Patrick von Platen's avatar
Patrick von Platen committed
346
347
348
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

349
350
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
351

352
        return UNet2DConditionOutput(sample=sample)