scheduling_edm_euler.py 19 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
Suraj Patil's avatar
Suraj Patil committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
Suraj Patil's avatar
Suraj Patil committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EDMEulerSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
37
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Suraj Patil's avatar
Suraj Patil committed
38
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
40
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Suraj Patil's avatar
Suraj Patil committed
41
42
43
44
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

45
46
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
Suraj Patil's avatar
Suraj Patil committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
    """
    Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1].

    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        sigma_min (`float`, *optional*, defaults to 0.002):
            Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable
            range is [0, 10].
        sigma_max (`float`, *optional*, defaults to 80.0):
            Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable
            range is [0.2, 80.0].
        sigma_data (`float`, *optional*, defaults to 0.5):
            The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
68
69
70
71
        sigma_schedule (`str`, *optional*, defaults to `karras`):
            Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
            (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
            incorporated in this model: https://huggingface.co/stabilityai/cosxl.
Suraj Patil's avatar
Suraj Patil committed
72
73
74
75
76
77
78
79
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        rho (`float`, *optional*, defaults to 7.0):
            The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
80
81
82
        final_sigmas_type (`str`, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
Suraj Patil's avatar
Suraj Patil committed
83
84
85
86
87
88
89
90
91
92
93
    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(
        self,
        sigma_min: float = 0.002,
        sigma_max: float = 80.0,
        sigma_data: float = 0.5,
94
        sigma_schedule: str = "karras",
Suraj Patil's avatar
Suraj Patil committed
95
96
97
        num_train_timesteps: int = 1000,
        prediction_type: str = "epsilon",
        rho: float = 7.0,
98
        final_sigmas_type: str = "zero",  # can be "zero" or "sigma_min"
Suraj Patil's avatar
Suraj Patil committed
99
    ):
100
101
102
        if sigma_schedule not in ["karras", "exponential"]:
            raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`")

Suraj Patil's avatar
Suraj Patil committed
103
104
105
        # setable values
        self.num_inference_steps = None

Aryan's avatar
Aryan committed
106
107
        sigmas_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
        sigmas = torch.arange(num_train_timesteps + 1, dtype=sigmas_dtype) / num_train_timesteps
108
        if sigma_schedule == "karras":
109
            sigmas = self._compute_karras_sigmas(sigmas)
110
        elif sigma_schedule == "exponential":
111
            sigmas = self._compute_exponential_sigmas(sigmas)
Aryan's avatar
Aryan committed
112
        sigmas = sigmas.to(torch.float32)
113

Suraj Patil's avatar
Suraj Patil committed
114
115
        self.timesteps = self.precondition_noise(sigmas)

116
117
118
119
120
121
122
123
124
125
        if self.config.final_sigmas_type == "sigma_min":
            sigma_last = sigmas[-1]
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        self.sigmas = torch.cat([sigmas, torch.full((1,), fill_value=sigma_last, device=sigmas.device)])
Suraj Patil's avatar
Suraj Patil committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

        self.is_scale_input_called = False

        self._step_index = None
        self._begin_index = None
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        return (self.config.sigma_max**2 + 1) ** 0.5

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
141
        The index counter for current timestep. It will increase 1 after each scheduler step.
Suraj Patil's avatar
Suraj Patil committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def precondition_inputs(self, sample, sigma):
Aryan's avatar
Aryan committed
164
        c_in = self._get_conditioning_c_in(sigma)
Suraj Patil's avatar
Suraj Patil committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        scaled_sample = sample * c_in
        return scaled_sample

    def precondition_noise(self, sigma):
        if not isinstance(sigma, torch.Tensor):
            sigma = torch.tensor([sigma])

        c_noise = 0.25 * torch.log(sigma)

        return c_noise

    def precondition_outputs(self, sample, model_output, sigma):
        sigma_data = self.config.sigma_data
        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)

        if self.config.prediction_type == "epsilon":
            c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        elif self.config.prediction_type == "v_prediction":
            c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        else:
            raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")

        denoised = c_skip * sample + c_out * model_output

        return denoised

191
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
192
193
194
195
196
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.

        Args:
197
            sample (`torch.Tensor`):
Suraj Patil's avatar
Suraj Patil committed
198
199
200
201
202
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
203
            `torch.Tensor`:
Suraj Patil's avatar
Suraj Patil committed
204
205
206
207
208
209
210
211
212
213
214
                A scaled input sample.
        """
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
        sample = self.precondition_inputs(sample, sigma)

        self.is_scale_input_called = True
        return sample

215
216
217
218
219
220
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        sigmas: Optional[Union[torch.Tensor, List[float]]] = None,
    ):
Suraj Patil's avatar
Suraj Patil committed
221
222
223
224
225
226
227
228
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
229
230
231
            sigmas (`Union[torch.Tensor, List[float]]`, *optional*):
                Custom sigmas to use for the denoising process. If not defined, the default behavior when
                `num_inference_steps` is passed will be used.
Suraj Patil's avatar
Suraj Patil committed
232
233
234
        """
        self.num_inference_steps = num_inference_steps

Aryan's avatar
Aryan committed
235
        sigmas_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
236
        if sigmas is None:
Aryan's avatar
Aryan committed
237
            sigmas = torch.linspace(0, 1, self.num_inference_steps, dtype=sigmas_dtype)
238
        elif isinstance(sigmas, float):
Aryan's avatar
Aryan committed
239
            sigmas = torch.tensor(sigmas, dtype=sigmas_dtype)
240
        else:
Aryan's avatar
Aryan committed
241
            sigmas = sigmas.to(sigmas_dtype)
242
        if self.config.sigma_schedule == "karras":
243
            sigmas = self._compute_karras_sigmas(sigmas)
244
        elif self.config.sigma_schedule == "exponential":
245
            sigmas = self._compute_exponential_sigmas(sigmas)
246
        sigmas = sigmas.to(dtype=torch.float32, device=device)
Aryan's avatar
Aryan committed
247

Suraj Patil's avatar
Suraj Patil committed
248
249
        self.timesteps = self.precondition_noise(sigmas)

250
251
252
253
254
255
256
257
258
259
        if self.config.final_sigmas_type == "sigma_min":
            sigma_last = sigmas[-1]
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        self.sigmas = torch.cat([sigmas, torch.full((1,), fill_value=sigma_last, device=sigmas.device)])
Suraj Patil's avatar
Suraj Patil committed
260
261
262
263
264
        self._step_index = None
        self._begin_index = None
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    # Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
265
    def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
266
267
268
269
270
271
272
273
        """Constructs the noise schedule of Karras et al. (2022)."""
        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
274
275
        return sigmas

276
    def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
277
278
279
280
281
282
283
        """Implementation closely follows k-diffusion.

        https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
        """
        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
Suraj Patil's avatar
Suraj Patil committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        return sigmas

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
312
313
314
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
Suraj Patil's avatar
Suraj Patil committed
315
316
317
318
319
320
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
Aryan's avatar
Aryan committed
321
        pred_original_sample: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
322
323
324
325
326
327
    ) -> Union[EDMEulerSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
328
            model_output (`torch.Tensor`):
Suraj Patil's avatar
Suraj Patil committed
329
330
331
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
332
            sample (`torch.Tensor`):
Suraj Patil's avatar
Suraj Patil committed
333
334
335
336
337
338
339
340
341
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
342
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple.
Suraj Patil's avatar
Suraj Patil committed
343
344
345
346
347
348
349

        Returns:
            [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

350
        if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
Suraj Patil's avatar
Suraj Patil committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EDMEulerScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if not self.is_scale_input_called:
            logger.warning(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

        sigma = self.sigmas[self.step_index]

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
378
379
380
381
            noise = randn_tensor(
                model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
            )
            eps = noise * s_noise
Suraj Patil's avatar
Suraj Patil committed
382
383
384
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
Aryan's avatar
Aryan committed
385
386
        if pred_original_sample is None:
            pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat)
Suraj Patil's avatar
Suraj Patil committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

        dt = self.sigmas[self.step_index + 1] - sigma_hat

        prev_sample = sample + derivative * dt

        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
402
403
404
405
            return (
                prev_sample,
                pred_original_sample,
            )
Suraj Patil's avatar
Suraj Patil committed
406
407
408
409
410
411

        return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(
        self,
412
413
414
415
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
416
417
418
419
420
421
422
423
424
425
426
427
428
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
429
430
431
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
Suraj Patil's avatar
Suraj Patil committed
432
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
433
            # add noise is called before first denoising step to create initial latent(img2img)
Suraj Patil's avatar
Suraj Patil committed
434
435
436
437
438
439
440
441
442
            step_indices = [self.begin_index] * timesteps.shape[0]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

Aryan's avatar
Aryan committed
443
444
445
446
    def _get_conditioning_c_in(self, sigma):
        c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
        return c_in

Suraj Patil's avatar
Suraj Patil committed
447
448
    def __len__(self):
        return self.config.num_train_timesteps