pipeline_pndm.py 2.65 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Pedro Cuenca's avatar
Pedro Cuenca committed
17
import warnings
Partho's avatar
Partho committed
18
from typing import Optional
Pedro Cuenca's avatar
Pedro Cuenca committed
19

Patrick von Platen's avatar
Patrick von Platen committed
20
21
import torch

Partho's avatar
Partho committed
22
from ...models import UNet2DModel
23
from ...pipeline_utils import DiffusionPipeline
Partho's avatar
Partho committed
24
from ...schedulers import PNDMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
25
26


Patrick von Platen's avatar
Patrick von Platen committed
27
class PNDMPipeline(DiffusionPipeline):
Partho's avatar
Partho committed
28
29
30
31
    unet: UNet2DModel
    scheduler: PNDMScheduler

    def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler):
Patrick von Platen's avatar
Patrick von Platen committed
32
        super().__init__()
33
34
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
35

Patrick von Platen's avatar
Patrick von Platen committed
36
    @torch.no_grad()
Partho's avatar
Partho committed
37
38
39
40
41
42
43
44
    def __call__(
        self,
        batch_size: int = 1,
        num_inference_steps: int = 50,
        generator: Optional[torch.Generator] = None,
        output_type: Optional[str] = "pil",
        **kwargs,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
45
46
        # For more information on the sampling method you can take a look at Algorithm 2 of
        # the official paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
47

Pedro Cuenca's avatar
Pedro Cuenca committed
48
49
50
51
52
53
54
55
56
57
58
        if "torch_device" in kwargs:
            device = kwargs.pop("torch_device")
            warnings.warn(
                "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
                " Consider using `pipe.to(torch_device)` instead."
            )

            # Set device as before (to be removed in 0.3.0)
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"
            self.to(device)
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61

        # Sample gaussian noise to begin loop
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
62
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
63
            generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
64
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
65
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
66

67
        self.scheduler.set_timesteps(num_inference_steps)
hysts's avatar
hysts committed
68
        for t in self.progress_bar(self.scheduler.timesteps):
69
            model_output = self.unet(image, t)["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
70

Patrick von Platen's avatar
Patrick von Platen committed
71
72
            image = self.scheduler.step(model_output, t, image)["prev_sample"]

73
74
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
75
76
        if output_type == "pil":
            image = self.numpy_to_pil(image)
77

Patrick von Platen's avatar
Patrick von Platen committed
78
        return {"sample": image}