test_pipeline_utils.py 38.9 KB
Newer Older
1
2
3
import contextlib
import io
import re
4
5
import unittest

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AnimateDiffPipeline,
    AnimateDiffVideoToVideoPipeline,
    AutoencoderKL,
    DDIMScheduler,
    MotionAdapter,
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
21
from diffusers.pipelines.pipeline_loading_utils import is_safetensors_compatible, variant_compatible_siblings
22
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89


class IsSafetensorsCompatibleTests(unittest.TestCase):
    def test_all_is_compatible(self):
        filenames = [
            "safety_checker/pytorch_model.bin",
            "safety_checker/model.safetensors",
            "vae/diffusion_pytorch_model.bin",
            "vae/diffusion_pytorch_model.safetensors",
            "text_encoder/pytorch_model.bin",
            "text_encoder/model.safetensors",
            "unet/diffusion_pytorch_model.bin",
            "unet/diffusion_pytorch_model.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))

    def test_diffusers_model_is_compatible(self):
        filenames = [
            "unet/diffusion_pytorch_model.bin",
            "unet/diffusion_pytorch_model.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))

    def test_diffusers_model_is_not_compatible(self):
        filenames = [
            "safety_checker/pytorch_model.bin",
            "safety_checker/model.safetensors",
            "vae/diffusion_pytorch_model.bin",
            "vae/diffusion_pytorch_model.safetensors",
            "text_encoder/pytorch_model.bin",
            "text_encoder/model.safetensors",
            "unet/diffusion_pytorch_model.bin",
            # Removed: 'unet/diffusion_pytorch_model.safetensors',
        ]
        self.assertFalse(is_safetensors_compatible(filenames))

    def test_transformer_model_is_compatible(self):
        filenames = [
            "text_encoder/pytorch_model.bin",
            "text_encoder/model.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))

    def test_transformer_model_is_not_compatible(self):
        filenames = [
            "safety_checker/pytorch_model.bin",
            "safety_checker/model.safetensors",
            "vae/diffusion_pytorch_model.bin",
            "vae/diffusion_pytorch_model.safetensors",
            "text_encoder/pytorch_model.bin",
            # Removed: 'text_encoder/model.safetensors',
            "unet/diffusion_pytorch_model.bin",
            "unet/diffusion_pytorch_model.safetensors",
        ]
        self.assertFalse(is_safetensors_compatible(filenames))

    def test_all_is_compatible_variant(self):
        filenames = [
            "safety_checker/pytorch_model.fp16.bin",
            "safety_checker/model.fp16.safetensors",
            "vae/diffusion_pytorch_model.fp16.bin",
            "vae/diffusion_pytorch_model.fp16.safetensors",
            "text_encoder/pytorch_model.fp16.bin",
            "text_encoder/model.fp16.safetensors",
            "unet/diffusion_pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.safetensors",
        ]
90
        self.assertTrue(is_safetensors_compatible(filenames))
91
92
93
94
95
96

    def test_diffusers_model_is_compatible_variant(self):
        filenames = [
            "unet/diffusion_pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.safetensors",
        ]
97
        self.assertTrue(is_safetensors_compatible(filenames))
98

99
    def test_diffusers_model_is_compatible_variant_mixed(self):
100
101
        filenames = [
            "unet/diffusion_pytorch_model.bin",
102
            "unet/diffusion_pytorch_model.fp16.safetensors",
103
        ]
104
        self.assertTrue(is_safetensors_compatible(filenames))
105
106
107
108
109
110
111
112
113
114
115
116

    def test_diffusers_model_is_not_compatible_variant(self):
        filenames = [
            "safety_checker/pytorch_model.fp16.bin",
            "safety_checker/model.fp16.safetensors",
            "vae/diffusion_pytorch_model.fp16.bin",
            "vae/diffusion_pytorch_model.fp16.safetensors",
            "text_encoder/pytorch_model.fp16.bin",
            "text_encoder/model.fp16.safetensors",
            "unet/diffusion_pytorch_model.fp16.bin",
            # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
        ]
117
        self.assertFalse(is_safetensors_compatible(filenames))
118
119
120
121
122
123

    def test_transformer_model_is_compatible_variant(self):
        filenames = [
            "text_encoder/pytorch_model.fp16.bin",
            "text_encoder/model.fp16.safetensors",
        ]
124
        self.assertTrue(is_safetensors_compatible(filenames))
125
126
127
128
129
130
131
132
133
134
135

    def test_transformer_model_is_not_compatible_variant(self):
        filenames = [
            "safety_checker/pytorch_model.fp16.bin",
            "safety_checker/model.fp16.safetensors",
            "vae/diffusion_pytorch_model.fp16.bin",
            "vae/diffusion_pytorch_model.fp16.safetensors",
            "text_encoder/pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.safetensors",
        ]
136
137
        self.assertFalse(is_safetensors_compatible(filenames))

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def test_transformer_model_is_compatible_variant_extra_folder(self):
        filenames = [
            "safety_checker/pytorch_model.fp16.bin",
            "safety_checker/model.fp16.safetensors",
            "vae/diffusion_pytorch_model.fp16.bin",
            "vae/diffusion_pytorch_model.fp16.safetensors",
            "text_encoder/pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames, folder_names={"vae", "unet"}))

    def test_transformer_model_is_not_compatible_variant_extra_folder(self):
        filenames = [
            "safety_checker/pytorch_model.fp16.bin",
            "safety_checker/model.fp16.safetensors",
            "vae/diffusion_pytorch_model.fp16.bin",
            "vae/diffusion_pytorch_model.fp16.safetensors",
            "text_encoder/pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.bin",
            "unet/diffusion_pytorch_model.fp16.safetensors",
        ]
        self.assertFalse(is_safetensors_compatible(filenames, folder_names={"text_encoder"}))

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def test_transformers_is_compatible_sharded(self):
        filenames = [
            "text_encoder/pytorch_model.bin",
            "text_encoder/model-00001-of-00002.safetensors",
            "text_encoder/model-00002-of-00002.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))

    def test_transformers_is_compatible_variant_sharded(self):
        filenames = [
            "text_encoder/pytorch_model.bin",
            "text_encoder/model.fp16-00001-of-00002.safetensors",
            "text_encoder/model.fp16-00001-of-00002.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))

    def test_diffusers_is_compatible_sharded(self):
        filenames = [
            "unet/diffusion_pytorch_model.bin",
            "unet/diffusion_pytorch_model-00001-of-00002.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00002.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))

    def test_diffusers_is_compatible_variant_sharded(self):
        filenames = [
            "unet/diffusion_pytorch_model.bin",
            "unet/diffusion_pytorch_model.fp16-00001-of-00002.safetensors",
            "unet/diffusion_pytorch_model.fp16-00001-of-00002.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))

    def test_diffusers_is_compatible_only_variants(self):
        filenames = [
            "unet/diffusion_pytorch_model.fp16.safetensors",
        ]
        self.assertTrue(is_safetensors_compatible(filenames))
199

200
201
202
203
204
205
206
207
208
209
210
211
    def test_diffusers_is_compatible_no_components(self):
        filenames = [
            "diffusion_pytorch_model.bin",
        ]
        self.assertFalse(is_safetensors_compatible(filenames))

    def test_diffusers_is_compatible_no_components_only_variants(self):
        filenames = [
            "diffusion_pytorch_model.fp16.bin",
        ]
        self.assertFalse(is_safetensors_compatible(filenames))

212

213
214
class VariantCompatibleSiblingsTest(unittest.TestCase):
    def test_only_non_variants_downloaded(self):
215
        ignore_patterns = ["*.bin"]
216
217
218
219
220
221
222
223
224
225
        variant = "fp16"
        filenames = [
            f"vae/diffusion_pytorch_model.{variant}.safetensors",
            "vae/diffusion_pytorch_model.safetensors",
            f"text_encoder/model.{variant}.safetensors",
            "text_encoder/model.safetensors",
            f"unet/diffusion_pytorch_model.{variant}.safetensors",
            "unet/diffusion_pytorch_model.safetensors",
        ]

226
227
228
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=None, ignore_patterns=ignore_patterns
        )
229
230
231
        assert all(variant not in f for f in model_filenames)

    def test_only_variants_downloaded(self):
232
        ignore_patterns = ["*.bin"]
233
234
235
236
237
238
239
240
241
242
        variant = "fp16"
        filenames = [
            f"vae/diffusion_pytorch_model.{variant}.safetensors",
            "vae/diffusion_pytorch_model.safetensors",
            f"text_encoder/model.{variant}.safetensors",
            "text_encoder/model.safetensors",
            f"unet/diffusion_pytorch_model.{variant}.safetensors",
            "unet/diffusion_pytorch_model.safetensors",
        ]

243
244
245
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
246
247
248
        assert all(variant in f for f in model_filenames)

    def test_mixed_variants_downloaded(self):
249
        ignore_patterns = ["*.bin"]
250
251
252
253
254
255
256
257
258
        variant = "fp16"
        non_variant_file = "text_encoder/model.safetensors"
        filenames = [
            f"vae/diffusion_pytorch_model.{variant}.safetensors",
            "vae/diffusion_pytorch_model.safetensors",
            "text_encoder/model.safetensors",
            f"unet/diffusion_pytorch_model.{variant}.safetensors",
            "unet/diffusion_pytorch_model.safetensors",
        ]
259
260
261
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
262
263
264
        assert all(variant in f if f != non_variant_file else variant not in f for f in model_filenames)

    def test_non_variants_in_main_dir_downloaded(self):
265
        ignore_patterns = ["*.bin"]
266
267
268
269
270
271
272
        variant = "fp16"
        filenames = [
            f"diffusion_pytorch_model.{variant}.safetensors",
            "diffusion_pytorch_model.safetensors",
            "model.safetensors",
            f"model.{variant}.safetensors",
        ]
273
274
275
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=None, ignore_patterns=ignore_patterns
        )
276
277
278
        assert all(variant not in f for f in model_filenames)

    def test_variants_in_main_dir_downloaded(self):
279
        ignore_patterns = ["*.bin"]
280
281
282
283
284
285
286
287
288
        variant = "fp16"
        filenames = [
            f"diffusion_pytorch_model.{variant}.safetensors",
            "diffusion_pytorch_model.safetensors",
            "model.safetensors",
            f"model.{variant}.safetensors",
            f"diffusion_pytorch_model.{variant}.safetensors",
            "diffusion_pytorch_model.safetensors",
        ]
289
290
291
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
292
293
294
        assert all(variant in f for f in model_filenames)

    def test_mixed_variants_in_main_dir_downloaded(self):
295
        ignore_patterns = ["*.bin"]
296
297
298
299
300
301
302
        variant = "fp16"
        non_variant_file = "model.safetensors"
        filenames = [
            f"diffusion_pytorch_model.{variant}.safetensors",
            "diffusion_pytorch_model.safetensors",
            "model.safetensors",
        ]
303
304
305
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
306
307
        assert all(variant in f if f != non_variant_file else variant not in f for f in model_filenames)

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    def test_sharded_variants_in_main_dir_downloaded(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        filenames = [
            "diffusion_pytorch_model.safetensors.index.json",
            "diffusion_pytorch_model-00001-of-00003.safetensors",
            "diffusion_pytorch_model-00002-of-00003.safetensors",
            "diffusion_pytorch_model-00003-of-00003.safetensors",
            f"diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
            f"diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
            f"diffusion_pytorch_model.safetensors.index.{variant}.json",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert all(variant in f for f in model_filenames)

    def test_mixed_sharded_and_variant_in_main_dir_downloaded(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        filenames = [
            "diffusion_pytorch_model.safetensors.index.json",
            "diffusion_pytorch_model-00001-of-00003.safetensors",
            "diffusion_pytorch_model-00002-of-00003.safetensors",
            "diffusion_pytorch_model-00003-of-00003.safetensors",
            f"diffusion_pytorch_model.{variant}.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert all(variant in f for f in model_filenames)

    def test_mixed_sharded_non_variants_in_main_dir_downloaded(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        filenames = [
            f"diffusion_pytorch_model.safetensors.index.{variant}.json",
            "diffusion_pytorch_model.safetensors.index.json",
            "diffusion_pytorch_model-00001-of-00003.safetensors",
            "diffusion_pytorch_model-00002-of-00003.safetensors",
            "diffusion_pytorch_model-00003-of-00003.safetensors",
            f"diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
            f"diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=None, ignore_patterns=ignore_patterns
        )
        assert all(variant not in f for f in model_filenames)

357
    def test_sharded_non_variants_downloaded(self):
358
        ignore_patterns = ["*.bin"]
359
360
361
362
363
364
365
366
367
368
        variant = "fp16"
        filenames = [
            f"unet/diffusion_pytorch_model.safetensors.index.{variant}.json",
            "unet/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model-00001-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"unet/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
            f"unet/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
        ]
369
370
371
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=None, ignore_patterns=ignore_patterns
        )
372
373
374
        assert all(variant not in f for f in model_filenames)

    def test_sharded_variants_downloaded(self):
375
        ignore_patterns = ["*.bin"]
376
377
378
379
380
381
382
383
384
385
        variant = "fp16"
        filenames = [
            f"unet/diffusion_pytorch_model.safetensors.index.{variant}.json",
            "unet/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model-00001-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"unet/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
            f"unet/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
        ]
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert all(variant in f for f in model_filenames)
        assert model_filenames == variant_filenames

    def test_single_variant_with_sharded_non_variant_downloaded(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        filenames = [
            "unet/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model-00001-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"unet/diffusion_pytorch_model.{variant}.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
405
406
        assert all(variant in f for f in model_filenames)

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    def test_mixed_single_variant_with_sharded_non_variant_downloaded(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        allowed_non_variant = "unet"
        filenames = [
            "vae/diffusion_pytorch_model.safetensors.index.json",
            "vae/diffusion_pytorch_model-00001-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00002-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"vae/diffusion_pytorch_model.{variant}.safetensors",
            "unet/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model-00001-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00003-of-00003.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)

427
    def test_sharded_mixed_variants_downloaded(self):
428
        ignore_patterns = ["*.bin"]
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        variant = "fp16"
        allowed_non_variant = "unet"
        filenames = [
            f"vae/diffusion_pytorch_model.safetensors.index.{variant}.json",
            "vae/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model-00001-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"vae/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
            f"vae/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
            "vae/diffusion_pytorch_model-00001-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00002-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00003-of-00003.safetensors",
        ]
444
445
446
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
447
448
        assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    def test_downloading_when_no_variant_exists(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        filenames = ["model.safetensors", "diffusion_pytorch_model.safetensors"]
        with self.assertRaisesRegex(ValueError, "but no such modeling files are available. "):
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

    def test_downloading_use_safetensors_false(self):
        ignore_patterns = ["*.safetensors"]
        filenames = [
            "text_encoder/model.bin",
            "unet/diffusion_pytorch_model.bin",
            "unet/diffusion_pytorch_model.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=None, ignore_patterns=ignore_patterns
        )

        assert all(".safetensors" not in f for f in model_filenames)

    def test_non_variant_in_main_dir_with_variant_in_subfolder(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        allowed_non_variant = "diffusion_pytorch_model.safetensors"
        filenames = [
            f"unet/diffusion_pytorch_model.{variant}.safetensors",
            "diffusion_pytorch_model.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)

    def test_download_variants_when_component_has_no_safetensors_variant(self):
        ignore_patterns = None
        variant = "fp16"
        filenames = [
            f"unet/diffusion_pytorch_model.{variant}.bin",
            "vae/diffusion_pytorch_model.safetensors",
            f"vae/diffusion_pytorch_model.{variant}.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert {
            f"unet/diffusion_pytorch_model.{variant}.bin",
            f"vae/diffusion_pytorch_model.{variant}.safetensors",
        } == model_filenames

    def test_error_when_download_sharded_variants_when_component_has_no_safetensors_variant(self):
        ignore_patterns = ["*.bin"]
        variant = "fp16"
        filenames = [
            f"vae/diffusion_pytorch_model.bin.index.{variant}.json",
            "vae/diffusion_pytorch_model.safetensors.index.json",
            f"vae/diffusion_pytorch_model.{variant}-00002-of-00002.bin",
            "vae/diffusion_pytorch_model-00001-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00002-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00003-of-00003.safetensors",
            "unet/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model-00001-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"vae/diffusion_pytorch_model.{variant}-00001-of-00002.bin",
        ]
        with self.assertRaisesRegex(ValueError, "but no such modeling files are available. "):
            model_filenames, variant_filenames = variant_compatible_siblings(
                filenames, variant=variant, ignore_patterns=ignore_patterns
            )

    def test_download_sharded_variants_when_component_has_no_safetensors_variant_and_safetensors_false(self):
        ignore_patterns = ["*.safetensors"]
        allowed_non_variant = "unet"
        variant = "fp16"
        filenames = [
            f"vae/diffusion_pytorch_model.bin.index.{variant}.json",
            "vae/diffusion_pytorch_model.safetensors.index.json",
            f"vae/diffusion_pytorch_model.{variant}-00002-of-00002.bin",
            "vae/diffusion_pytorch_model-00001-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00002-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00003-of-00003.safetensors",
            "unet/diffusion_pytorch_model.safetensors.index.json",
            "unet/diffusion_pytorch_model-00001-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00002-of-00003.safetensors",
            "unet/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"vae/diffusion_pytorch_model.{variant}-00001-of-00002.bin",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)

    def test_download_sharded_legacy_variants(self):
        ignore_patterns = None
        variant = "fp16"
        filenames = [
            f"vae/transformer/diffusion_pytorch_model.safetensors.{variant}.index.json",
            "vae/diffusion_pytorch_model.safetensors.index.json",
            f"vae/diffusion_pytorch_model-00002-of-00002.{variant}.safetensors",
            "vae/diffusion_pytorch_model-00001-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00002-of-00003.safetensors",
            "vae/diffusion_pytorch_model-00003-of-00003.safetensors",
            f"vae/diffusion_pytorch_model-00001-of-00002.{variant}.safetensors",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=variant, ignore_patterns=ignore_patterns
        )
        assert all(variant in f for f in model_filenames)

    def test_download_onnx_models(self):
        ignore_patterns = ["*.safetensors"]
        filenames = [
            "vae/model.onnx",
            "unet/model.onnx",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=None, ignore_patterns=ignore_patterns
        )
        assert model_filenames == set(filenames)

    def test_download_flax_models(self):
        ignore_patterns = ["*.safetensors", "*.bin"]
        filenames = [
            "vae/diffusion_flax_model.msgpack",
            "unet/diffusion_flax_model.msgpack",
        ]
        model_filenames, variant_filenames = variant_compatible_siblings(
            filenames, variant=None, ignore_patterns=ignore_patterns
        )
        assert model_filenames == set(filenames)

582

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
class ProgressBarTests(unittest.TestCase):
    def get_dummy_components_image_generation(self):
        cross_attention_dim = 8

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(4, 8),
            layers_per_block=1,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=cross_attention_dim,
            norm_num_groups=2,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[4, 8],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            norm_num_groups=2,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=cross_attention_dim,
            intermediate_size=16,
            layer_norm_eps=1e-05,
            num_attention_heads=2,
            num_hidden_layers=2,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def get_dummy_components_video_generation(self):
        cross_attention_dim = 8
        block_out_channels = (8, 8)

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=block_out_channels,
            layers_per_block=2,
            sample_size=8,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=cross_attention_dim,
            norm_num_groups=2,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            clip_sample=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=block_out_channels,
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            norm_num_groups=2,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=cross_attention_dim,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        torch.manual_seed(0)
        motion_adapter = MotionAdapter(
            block_out_channels=block_out_channels,
            motion_layers_per_block=2,
            motion_norm_num_groups=2,
            motion_num_attention_heads=4,
        )

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "motion_adapter": motion_adapter,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def test_text_to_image(self):
        components = self.get_dummy_components_image_generation()
        pipe = StableDiffusionPipeline(**components)
        pipe.to(torch_device)

        inputs = {"prompt": "a cute cat", "num_inference_steps": 2}
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")

    def test_image_to_image(self):
        components = self.get_dummy_components_image_generation()
        pipe = StableDiffusionImg2ImgPipeline(**components)
        pipe.to(torch_device)

        image = Image.new("RGB", (32, 32))
        inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "strength": 0.5, "image": image}
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")

    def test_inpainting(self):
        components = self.get_dummy_components_image_generation()
        pipe = StableDiffusionInpaintPipeline(**components)
        pipe.to(torch_device)

        image = Image.new("RGB", (32, 32))
        mask = Image.new("RGB", (32, 32))
        inputs = {
            "prompt": "a cute cat",
            "num_inference_steps": 2,
            "strength": 0.5,
            "image": image,
            "mask_image": mask,
        }
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")

    def test_text_to_video(self):
        components = self.get_dummy_components_video_generation()
        pipe = AnimateDiffPipeline(**components)
        pipe.to(torch_device)

        inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "num_frames": 2}
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")

    def test_video_to_video(self):
        components = self.get_dummy_components_video_generation()
        pipe = AnimateDiffVideoToVideoPipeline(**components)
        pipe.to(torch_device)

        num_frames = 2
        video = [Image.new("RGB", (32, 32))] * num_frames
        inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "video": video}
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929


@require_torch_gpu
class PipelineDeviceAndDtypeStabilityTests(unittest.TestCase):
    expected_pipe_device = torch.device("cuda:0")
    expected_pipe_dtype = torch.float64

    def get_dummy_components_image_generation(self):
        cross_attention_dim = 8

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(4, 8),
            layers_per_block=1,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=cross_attention_dim,
            norm_num_groups=2,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[4, 8],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            norm_num_groups=2,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=cross_attention_dim,
            intermediate_size=16,
            layer_norm_eps=1e-05,
            num_attention_heads=2,
            num_hidden_layers=2,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def test_deterministic_device(self):
        components = self.get_dummy_components_image_generation()

        pipe = StableDiffusionPipeline(**components)
        pipe.to(device=torch_device, dtype=torch.float32)

        pipe.unet.to(device="cpu")
        pipe.vae.to(device="cuda")
        pipe.text_encoder.to(device="cuda:0")

        pipe_device = pipe.device

        self.assertEqual(
            self.expected_pipe_device,
            pipe_device,
            f"Wrong expected device. Expected {self.expected_pipe_device}. Got {pipe_device}.",
        )

    def test_deterministic_dtype(self):
        components = self.get_dummy_components_image_generation()

        pipe = StableDiffusionPipeline(**components)
        pipe.to(device=torch_device, dtype=torch.float32)

        pipe.unet.to(dtype=torch.float16)
        pipe.vae.to(dtype=torch.float32)
        pipe.text_encoder.to(dtype=torch.float64)

        pipe_dtype = pipe.dtype

        self.assertEqual(
            self.expected_pipe_dtype,
            pipe_dtype,
            f"Wrong expected dtype. Expected {self.expected_pipe_dtype}. Got {pipe_dtype}.",
        )