overview.md 7.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

-->

# Quantization

16
Quantization focuses on representing data with fewer bits while also trying to preserve the precision of the original data. This often means converting a data type to represent the same information with fewer bits. For example, if your model weights are stored as 32-bit floating points and they're quantized to 16-bit floating points, this halves the model size which makes it easier to store and reduces memory usage. Lower precision can also speedup inference because it takes less time to perform calculations with fewer bits.
17

18
Diffusers supports multiple quantization backends to make large diffusion models like [Flux](../api/pipelines/flux) more accessible. This guide shows how to use the [`~quantizers.PipelineQuantizationConfig`] class to quantize a pipeline during its initialization from a pretrained or non-quantized checkpoint.
19

20
## Pipeline-level quantization
21

22
There are two ways you can use [`~quantizers.PipelineQuantizationConfig`] depending on the level of control you want over the quantization specifications of each model in the pipeline.
23

24
25
- for more basic and simple use cases, you only need to define the `quant_backend`, `quant_kwargs`, and `components_to_quantize`
- for more granular quantization control, provide a `quant_mapping` that provides the quantization specifications for the individual model components
26

27
### Simple quantization
28

29
Initialize [`~quantizers.PipelineQuantizationConfig`] with the following parameters.
30

31
32
33
- `quant_backend` specifies which quantization backend to use. Currently supported backends include: `bitsandbytes_4bit`, `bitsandbytes_8bit`, `gguf`, `quanto`, and `torchao`.
- `quant_kwargs` contains the specific quantization arguments to use.
- `components_to_quantize` specifies which components of the pipeline to quantize. Typically, you should quantize the most compute intensive components like the transformer. The text encoder is another component to consider quantizing if a pipeline has more than one such as [`FluxPipeline`]. The example below quantizes the T5 text encoder in [`FluxPipeline`] while keeping the CLIP model intact.
34

35
36
37
38
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.quantizers import PipelineQuantizationConfig
39

40
41
42
43
44
45
pipeline_quant_config = PipelineQuantizationConfig(
    quant_backend="bitsandbytes_4bit",
    quant_kwargs={"load_in_4bit": True, "bnb_4bit_quant_type": "nf4", "bnb_4bit_compute_dtype": torch.bfloat16},
    components_to_quantize=["transformer", "text_encoder_2"],
)
```
46

47
Pass the `pipeline_quant_config` to [`~DiffusionPipeline.from_pretrained`] to quantize the pipeline.
48

49
50
51
52
53
54
55
56
57
```py
pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    quantization_config=pipeline_quant_config,
    torch_dtype=torch.bfloat16,
).to("cuda")

image = pipe("photo of a cute dog").images[0]
```
58

59
### quant_mapping
60

61
62
63
64
65
The `quant_mapping` argument provides more flexible options for how to quantize each individual component in a pipeline, like combining different quantization backends.

Initialize [`~quantizers.PipelineQuantizationConfig`] and pass a `quant_mapping` to it. The `quant_mapping` allows you to specify the quantization options for each component in the pipeline such as the transformer and text encoder.

The example below uses two quantization backends, [`~quantizers.QuantoConfig`] and [`transformers.BitsAndBytesConfig`], for the transformer and text encoder.
66
67
68
69

```py
import torch
from diffusers import DiffusionPipeline
70
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
71
72
from diffusers.quantizers.quantization_config import QuantoConfig
from diffusers.quantizers import PipelineQuantizationConfig
73
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
74
75
76
77

pipeline_quant_config = PipelineQuantizationConfig(
    quant_mapping={
        "transformer": QuantoConfig(weights_dtype="int8"),
78
        "text_encoder_2": TransformersBitsAndBytesConfig(
79
80
81
82
83
84
            load_in_4bit=True, compute_dtype=torch.bfloat16
        ),
    }
)
```

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
There is a separate bitsandbytes backend in [Transformers](https://huggingface.co/docs/transformers/main_classes/quantization#transformers.BitsAndBytesConfig). You need to import and use [`transformers.BitsAndBytesConfig`] for components that come from Transformers. For example, `text_encoder_2` in [`FluxPipeline`] is a [`~transformers.T5EncoderModel`] from Transformers so you need to use [`transformers.BitsAndBytesConfig`] instead of [`diffusers.BitsAndBytesConfig`].

> [!TIP]
> Use the [simple quantization](#simple-quantization) method above if you don't want to manage these distinct imports or aren't sure where each pipeline component comes from.

```py
import torch
from diffusers import DiffusionPipeline
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers.quantizers import PipelineQuantizationConfig
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig

pipeline_quant_config = PipelineQuantizationConfig(
    quant_mapping={
        "transformer": DiffusersBitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16),
        "text_encoder_2": TransformersBitsAndBytesConfig(
            load_in_4bit=True, compute_dtype=torch.bfloat16
        ),
    }
)
```

Pass the `pipeline_quant_config` to [`~DiffusionPipeline.from_pretrained`] to quantize the pipeline.
108
109
110
111
112
113
114
115
116
117
118

```py
pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    quantization_config=pipeline_quant_config,
    torch_dtype=torch.bfloat16,
).to("cuda")

image = pipe("photo of a cute dog").images[0]
```

119
## Resources
120

121
Check out the resources below to learn more about quantization.
122

123
- If you are new to quantization, we recommend checking out the following beginner-friendly courses in collaboration with DeepLearning.AI.
124

125
126
    - [Quantization Fundamentals with Hugging Face](https://www.deeplearning.ai/short-courses/quantization-fundamentals-with-hugging-face/)
    - [Quantization in Depth](https://www.deeplearning.ai/short-courses/quantization-in-depth/)
127

128
- Refer to the [Contribute new quantization method guide](https://huggingface.co/docs/transformers/main/en/quantization/contribute) if you're interested in adding a new quantization method.
129

130
- The Transformers quantization [Overview](https://huggingface.co/docs/transformers/quantization/overview#when-to-use-what) provides an overview of the pros and cons of different quantization backends.
131

132
- Read the [Exploring Quantization Backends in Diffusers](https://huggingface.co/blog/diffusers-quantization) blog post for a brief introduction to each quantization backend, how to choose a backend, and combining quantization with other memory optimizations.