test_ltx_latent_upsample.py 5.18 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch

from diffusers import AutoencoderKLLTXVideo, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel

23
from ...testing_utils import enable_full_determinism
Aryan's avatar
Aryan committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class LTXLatentUpsamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = LTXLatentUpsamplePipeline
    params = {"video", "generator"}
    batch_params = {"video", "generator"}
    required_optional_params = frozenset(["generator", "latents", "return_dict"])
    test_xformers_attention = False
    supports_dduf = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        vae = AutoencoderKLLTXVideo(
            in_channels=3,
            out_channels=3,
            latent_channels=8,
            block_out_channels=(8, 8, 8, 8),
            decoder_block_out_channels=(8, 8, 8, 8),
            layers_per_block=(1, 1, 1, 1, 1),
            decoder_layers_per_block=(1, 1, 1, 1, 1),
            spatio_temporal_scaling=(True, True, False, False),
            decoder_spatio_temporal_scaling=(True, True, False, False),
            decoder_inject_noise=(False, False, False, False, False),
            upsample_residual=(False, False, False, False),
            upsample_factor=(1, 1, 1, 1),
            timestep_conditioning=False,
            patch_size=1,
            patch_size_t=1,
            encoder_causal=True,
            decoder_causal=False,
        )
        vae.use_framewise_encoding = False
        vae.use_framewise_decoding = False

        torch.manual_seed(0)
        latent_upsampler = LTXLatentUpsamplerModel(
            in_channels=8,
            mid_channels=32,
            num_blocks_per_stage=1,
            dims=3,
            spatial_upsample=True,
            temporal_upsample=False,
        )

        components = {
            "vae": vae,
            "latent_upsampler": latent_upsampler,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        video = torch.randn((5, 3, 32, 32), generator=generator, device=device)

        inputs = {
            "video": video,
            "generator": generator,
            "height": 16,
            "width": 16,
            "output_type": "pt",
        }

        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        video = pipe(**inputs).frames
        generated_video = video[0]

        self.assertEqual(generated_video.shape, (5, 3, 32, 32))
        expected_video = torch.randn(5, 3, 32, 32)
        max_diff = np.abs(generated_video - expected_video).max()
        self.assertLessEqual(max_diff, 1e10)

    def test_vae_tiling(self, expected_diff_max: float = 0.25):
        generator_device = "cpu"
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe.to("cpu")
        pipe.set_progress_bar_config(disable=None)

        # Without tiling
        inputs = self.get_dummy_inputs(generator_device)
        inputs["height"] = inputs["width"] = 128
        output_without_tiling = pipe(**inputs)[0]

        # With tiling
        pipe.vae.enable_tiling(
            tile_sample_min_height=96,
            tile_sample_min_width=96,
            tile_sample_stride_height=64,
            tile_sample_stride_width=64,
        )
        inputs = self.get_dummy_inputs(generator_device)
        inputs["height"] = inputs["width"] = 128
        output_with_tiling = pipe(**inputs)[0]

        self.assertLess(
            (to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
            expected_diff_max,
            "VAE tiling should not affect the inference results",
        )

    @unittest.skip("Test is not applicable.")
    def test_callback_inputs(self):
        pass

    @unittest.skip("Test is not applicable.")
    def test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
        pass

    @unittest.skip("Test is not applicable.")
    def test_inference_batch_consistent(self):
        pass

    @unittest.skip("Test is not applicable.")
    def test_inference_batch_single_identical(self):
        pass