test_controlnet_hunyuandit.py 13.4 KB
Newer Older
1
# coding=utf-8
Aryan's avatar
Aryan committed
2
# Copyright 2025 HuggingFace Inc and Tencent Hunyuan Team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    HunyuanDiT2DModel,
    HunyuanDiTControlNetPipeline,
)
from diffusers.models import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel
from diffusers.utils import load_image
31
32
33
from diffusers.utils.torch_utils import randn_tensor

from ...testing_utils import (
34
    backend_empty_cache,
35
    enable_full_determinism,
36
    require_torch_accelerator,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    slow,
    torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = HunyuanDiTControlNetPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])
Aryan's avatar
Aryan committed
60
    test_layerwise_casting = True
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = HunyuanDiT2DModel(
            sample_size=16,
            num_layers=4,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            in_channels=4,
            cross_attention_dim=32,
            cross_attention_dim_t5=32,
            pooled_projection_dim=16,
            hidden_size=24,
            activation_fn="gelu-approximate",
        )

        torch.manual_seed(0)
        controlnet = HunyuanDiT2DControlNetModel(
            sample_size=16,
            transformer_num_layers=4,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            in_channels=4,
            cross_attention_dim=32,
            cross_attention_dim_t5=32,
            pooled_projection_dim=16,
            hidden_size=24,
            activation_fn="gelu-approximate",
        )

        torch.manual_seed(0)
        vae = AutoencoderKL()

        scheduler = DDPMScheduler()
        text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            "safety_checker": None,
            "feature_extractor": None,
            "controlnet": controlnet,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        control_image = randn_tensor(
            (1, 3, 16, 16),
            generator=generator,
            device=torch.device(device),
            dtype=torch.float16,
        )

        controlnet_conditioning_scale = 0.5

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "control_image": control_image,
            "controlnet_conditioning_scale": controlnet_conditioning_scale,
        }

        return inputs

    def test_controlnet_hunyuandit(self):
        components = self.get_dummy_components()
        pipe = HunyuanDiTControlNetPipeline(**components)
        pipe = pipe.to(torch_device, dtype=torch.float16)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 16, 16, 3)

156
157
158
159
160
161
162
163
        if torch_device == "xpu":
            expected_slice = np.array(
                [0.6376953, 0.84375, 0.58691406, 0.48046875, 0.43652344, 0.5517578, 0.54248047, 0.5644531, 0.48217773]
            )
        else:
            expected_slice = np.array(
                [0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094]
            )
164

165
166
167
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
            f"Expected: {expected_slice}, got: {image_slice.flatten()}"
        )
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-3,
        )

    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(YiYi) need to fix later
        pass

    def test_sequential_offload_forward_pass_twice(self):
        # TODO(YiYi) need to fix later
        pass

    def test_save_load_optional_components(self):
        # TODO(YiYi) need to fix later
        pass

186
187
188
189
190
191
    @unittest.skip(
        "Test not supported as `encode_prompt` is called two times separately which deivates from about 99% of the pipelines we have."
    )
    def test_encode_prompt_works_in_isolation(self):
        pass

192
193

@slow
194
@require_torch_accelerator
195
196
197
198
199
200
class HunyuanDiTControlNetPipelineSlowTests(unittest.TestCase):
    pipeline_class = HunyuanDiTControlNetPipeline

    def setUp(self):
        super().setUp()
        gc.collect()
201
        backend_empty_cache(torch_device)
202
203
204
205

    def tearDown(self):
        super().tearDown()
        gc.collect()
206
        backend_empty_cache(torch_device)
207
208
209
210
211
212
213
214

    def test_canny(self):
        controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16
        )
        pipe = HunyuanDiTControlNetPipeline.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
215
        pipe.enable_model_cpu_offload(device=torch_device)
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere."
        n_prompt = ""
        control_image = load_image(
            "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true"
        )

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()

        expected_image = np.array(
            [0.43652344, 0.4399414, 0.44921875, 0.45043945, 0.45703125, 0.44873047, 0.43579102, 0.44018555, 0.42578125]
        )

        assert np.abs(original_image.flatten() - expected_image).max() < 1e-2

    def test_pose(self):
        controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", torch_dtype=torch.float16
        )
        pipe = HunyuanDiTControlNetPipeline.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
254
        pipe.enable_model_cpu_offload(device=torch_device)
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style"
        n_prompt = ""
        control_image = load_image(
            "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose/resolve/main/pose.jpg?download=true"
        )

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()

        expected_image = np.array(
            [0.4091797, 0.4177246, 0.39526367, 0.4194336, 0.40356445, 0.3857422, 0.39208984, 0.40429688, 0.37451172]
        )

        assert np.abs(original_image.flatten() - expected_image).max() < 1e-2

    def test_depth(self):
        controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth", torch_dtype=torch.float16
        )
        pipe = HunyuanDiTControlNetPipeline.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
293
        pipe.enable_model_cpu_offload(device=torch_device)
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment."
        n_prompt = ""
        control_image = load_image(
            "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth/resolve/main/depth.jpg?download=true"
        )

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()

        expected_image = np.array(
            [0.31982422, 0.32177734, 0.30126953, 0.3190918, 0.3100586, 0.31396484, 0.3232422, 0.33544922, 0.30810547]
        )

        assert np.abs(original_image.flatten() - expected_image).max() < 1e-2

    def test_multi_controlnet(self):
        controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16
        )
        controlnet = HunyuanDiT2DMultiControlNetModel([controlnet, controlnet])

        pipe = HunyuanDiTControlNetPipeline.from_pretrained(
            "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
334
        pipe.enable_model_cpu_offload(device=torch_device)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere."
        n_prompt = ""
        control_image = load_image(
            "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true"
        )

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=[control_image, control_image],
            controlnet_conditioning_scale=[0.25, 0.25],
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
359

360
361
362
363
364
        expected_image = np.array(
            [0.43652344, 0.44018555, 0.4494629, 0.44995117, 0.45654297, 0.44848633, 0.43603516, 0.4404297, 0.42626953]
        )

        assert np.abs(original_image.flatten() - expected_image).max() < 1e-2