"app/src/index.ts" did not exist on "9934ad77c0f59dcd9c22b9bfd0512beb780d8733"
train_controlnet_flax.py 44.2 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
15
# limitations under the License.
16
17
18
19
20
21

import argparse
import logging
import math
import os
import random
22
import time
23
24
25
26
27
28
29
30
31
from pathlib import Path

import jax
import jax.numpy as jnp
import numpy as np
import optax
import torch
import torch.utils.checkpoint
import transformers
32
from datasets import load_dataset, load_from_disk
33
34
35
36
from flax import jax_utils
from flax.core.frozen_dict import unfreeze
from flax.training import train_state
from flax.training.common_utils import shard
37
from huggingface_hub import create_repo, upload_folder
38
from PIL import Image, PngImagePlugin
39
from torch.utils.data import IterableDataset
40
41
42
43
44
45
46
47
48
49
50
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed

from diffusers import (
    FlaxAutoencoderKL,
    FlaxControlNetModel,
    FlaxDDPMScheduler,
    FlaxStableDiffusionControlNetPipeline,
    FlaxUNet2DConditionModel,
)
51
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid
52
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
53
54


55
56
57
58
59
# To prevent an error that occurs when there are abnormally large compressed data chunk in the png image
# see more https://github.com/python-pillow/Pillow/issues/5610
LARGE_ENOUGH_NUMBER = 100
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)

60
61
62
63
if is_wandb_available():
    import wandb

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
64
check_min_version("0.36.0.dev0")
65
66
67
68

logger = logging.getLogger(__name__)


69
70
def log_validation(pipeline, pipeline_params, controlnet_params, tokenizer, args, rng, weight_dtype):
    logger.info("Running validation...")
71

72
73
    pipeline_params = pipeline_params.copy()
    pipeline_params["controlnet"] = controlnet_params
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

    num_samples = jax.device_count()
    prng_seed = jax.random.split(rng, jax.device_count())

    if len(args.validation_image) == len(args.validation_prompt):
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt
    elif len(args.validation_image) == 1:
        validation_images = args.validation_image * len(args.validation_prompt)
        validation_prompts = args.validation_prompt
    elif len(args.validation_prompt) == 1:
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt * len(args.validation_image)
    else:
        raise ValueError(
            "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
        )

    image_logs = []

    for validation_prompt, validation_image in zip(validation_prompts, validation_images):
        prompts = num_samples * [validation_prompt]
        prompt_ids = pipeline.prepare_text_inputs(prompts)
        prompt_ids = shard(prompt_ids)

Patrick von Platen's avatar
Patrick von Platen committed
99
        validation_image = Image.open(validation_image).convert("RGB")
100
101
102
103
104
        processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
        processed_image = shard(processed_image)
        images = pipeline(
            prompt_ids=prompt_ids,
            image=processed_image,
105
            params=pipeline_params,
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
            prng_seed=prng_seed,
            num_inference_steps=50,
            jit=True,
        ).images

        images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
        images = pipeline.numpy_to_pil(images)

        image_logs.append(
            {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
        )

    if args.report_to == "wandb":
        formatted_images = []
        for log in image_logs:
            images = log["images"]
            validation_prompt = log["validation_prompt"]
            validation_image = log["validation_image"]

            formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
            for image in images:
                image = wandb.Image(image, caption=validation_prompt)
                formatted_images.append(image)

        wandb.log({"validation": formatted_images})
    else:
132
        logger.warning(f"image logging not implemented for {args.report_to}")
133
134
135
136

    return image_logs


137
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
138
    img_str = ""
139
140
141
142
143
144
145
146
    if image_logs is not None:
        for i, log in enumerate(image_logs):
            images = log["images"]
            validation_prompt = log["validation_prompt"]
            validation_image = log["validation_image"]
            validation_image.save(os.path.join(repo_folder, "image_control.png"))
            img_str += f"prompt: {validation_prompt}\n"
            images = [validation_image] + images
147
            make_image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
148
            img_str += f"![images_{i})](./images_{i}.png)\n"
149

150
    model_description = f"""
151
# controlnet- {repo_id}
152
153
154
155

These are controlnet weights trained on {base_model} with new type of conditioning. You can find some example images in the following. \n
{img_str}
"""
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="creativeml-openrail-m",
        base_model=base_model,
        model_description=model_description,
        inference=True,
    )

    tags = [
        "stable-diffusion",
        "stable-diffusion-diffusers",
        "text-to-image",
        "diffusers",
        "controlnet",
        "jax-diffusers-event",
173
        "diffusers-training",
174
175
176
177
    ]
    model_card = populate_model_card(model_card, tags=tags)

    model_card.save(os.path.join(repo_folder, "README.md"))
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--controlnet_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
        " If not specified controlnet weights are initialized from unet.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--from_pt",
        action="store_true",
204
        help="Load the pretrained model from a PyTorch checkpoint.",
205
    )
206
207
208
209
210
211
    parser.add_argument(
        "--controlnet_revision",
        type=str,
        default=None,
        help="Revision of controlnet model identifier from huggingface.co/models.",
    )
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    parser.add_argument(
        "--profile_steps",
        type=int,
        default=0,
        help="How many training steps to profile in the beginning.",
    )
    parser.add_argument(
        "--profile_validation",
        action="store_true",
        help="Whether to profile the (last) validation.",
    )
    parser.add_argument(
        "--profile_memory",
        action="store_true",
        help="Whether to dump an initial (before training loop) and a final (at program end) memory profile.",
    )
    parser.add_argument(
        "--ccache",
        type=str,
        default=None,
        help="Enables compilation cache.",
    )
234
235
236
237
238
    parser.add_argument(
        "--controlnet_from_pt",
        action="store_true",
        help="Load the controlnet model from a PyTorch checkpoint.",
    )
239
240
241
242
243
244
245
246
247
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
248
249
250
        default="runs/{timestamp}",
        help="The output directory where the model predictions and checkpoints will be written. "
        "Can contain placeholders: {timestamp}.",
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.",
    )
278
279
280
281
282
283
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=5000,
        help=("Save a checkpoint of the training state every X updates."),
    )
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
304
305
306
307
308
    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
Quentin Gallouédec's avatar
Quentin Gallouédec committed
309
        "More details here: https://huggingface.co/papers/2303.09556.",
310
    )
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=100,
        help=("log training metric every X steps to `--report_t`"),
    )
    parser.add_argument(
        "--report_to",
        type=str,
341
342
        default="wandb",
        help=('The integration to report the results and logs to. Currently only supported platforms are `"wandb"`'),
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
365
    parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.")
366
367
368
369
370
371
372
373
374
375
376
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
377
378
379
380
381
382
383
384
385
386
387
            "A folder containing the training dataset. By default it will use `load_dataset` method to load a custom dataset from the folder."
            "Folder must contain a dataset script as described here https://huggingface.co/docs/datasets/dataset_script) ."
            "If `--load_from_disk` flag is passed, it will use `load_from_disk` method instead. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--load_from_disk",
        action="store_true",
        help=(
            "If True, will load a dataset that was previously saved using `save_to_disk` from `--train_data_dir`"
            "See more https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.load_from_disk"
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        ),
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing the target image."
    )
    parser.add_argument(
        "--conditioning_image_column",
        type=str,
        default="conditioning_image",
        help="The column of the dataset containing the controlnet conditioning image.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
411
            "value if set. Needed if `streaming` is set to True."
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        ),
    )
    parser.add_argument(
        "--proportion_empty_prompts",
        type=float,
        default=0,
        help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        nargs="+",
        help=(
            "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
            " Provide either a matching number of `--validation_image`s, a single `--validation_image`"
            " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
        ),
    )
    parser.add_argument(
        "--validation_image",
        type=str,
        default=None,
        nargs="+",
        help=(
            "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
            " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
            " a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
            " `--validation_image` that will be used with all `--validation_prompt`s."
        ),
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` and logging the images."
        ),
    )
452
    parser.add_argument("--wandb_entity", type=str, default=None, help=("The wandb entity to use (for teams)."))
453
454
455
456
457
458
459
460
461
462
463
464
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="train_controlnet_flax",
        help=("The `project` argument passed to wandb"),
    )
    parser.add_argument(
        "--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over"
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")

    args = parser.parse_args()
465
466
    args.output_dir = args.output_dir.replace("{timestamp}", time.strftime("%Y%m%d_%H%M%S"))

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # Sanity checks
    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("Need either a dataset name or a training folder.")
    if args.dataset_name is not None and args.train_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")

    if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
        raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")

    if args.validation_prompt is not None and args.validation_image is None:
        raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")

    if args.validation_prompt is None and args.validation_image is not None:
        raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")

    if (
        args.validation_image is not None
        and args.validation_prompt is not None
        and len(args.validation_image) != 1
        and len(args.validation_prompt) != 1
        and len(args.validation_image) != len(args.validation_prompt)
    ):
        raise ValueError(
            "Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
            " or the same number of `--validation_prompt`s and `--validation_image`s"
        )

498
499
500
501
502
    # This idea comes from
    # https://github.com/borisdayma/dalle-mini/blob/d2be512d4a6a9cda2d63ba04afc33038f98f705f/src/dalle_mini/data.py#L370
    if args.streaming and args.max_train_samples is None:
        raise ValueError("You must specify `max_train_samples` when using dataset streaming.")

503
504
505
    return args


506
def make_train_dataset(args, tokenizer, batch_size=None):
507
508
509
510
511
512
513
514
515
516
517
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
518
            streaming=args.streaming,
519
520
521
        )
    else:
        if args.train_data_dir is not None:
522
523
524
525
526
527
528
529
530
            if args.load_from_disk:
                dataset = load_from_disk(
                    args.train_data_dir,
                )
            else:
                dataset = load_dataset(
                    args.train_data_dir,
                    cache_dir=args.cache_dir,
                )
531
        # See more about loading custom images at
532
        # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
533
534
535

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
536
537
538
539
    if isinstance(dataset["train"], IterableDataset):
        column_names = next(iter(dataset["train"])).keys()
    else:
        column_names = dataset["train"].column_names
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

    # 6. Get the column names for input/target.
    if args.image_column is None:
        image_column = column_names[0]
        logger.info(f"image column defaulting to {image_column}")
    else:
        image_column = args.image_column
        if image_column not in column_names:
            raise ValueError(
                f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    if args.caption_column is None:
        caption_column = column_names[1]
        logger.info(f"caption column defaulting to {caption_column}")
    else:
        caption_column = args.caption_column
        if caption_column not in column_names:
            raise ValueError(
                f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    if args.conditioning_image_column is None:
        conditioning_image_column = column_names[2]
        logger.info(f"conditioning image column defaulting to {caption_column}")
    else:
        conditioning_image_column = args.conditioning_image_column
        if conditioning_image_column not in column_names:
            raise ValueError(
                f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    def tokenize_captions(examples, is_train=True):
        captions = []
        for caption in examples[caption_column]:
            if random.random() < args.proportion_empty_prompts:
                captions.append("")
            elif isinstance(caption, str):
                captions.append(caption)
            elif isinstance(caption, (list, np.ndarray)):
                # take a random caption if there are multiple
                captions.append(random.choice(caption) if is_train else caption[0])
            else:
                raise ValueError(
                    f"Caption column `{caption_column}` should contain either strings or lists of strings."
                )
        inputs = tokenizer(
            captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
        )
        return inputs.input_ids

    image_transforms = transforms.Compose(
        [
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
594
            transforms.CenterCrop(args.resolution),
595
596
597
598
599
600
601
602
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    conditioning_image_transforms = transforms.Compose(
        [
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
603
            transforms.CenterCrop(args.resolution),
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
            transforms.ToTensor(),
        ]
    )

    def preprocess_train(examples):
        images = [image.convert("RGB") for image in examples[image_column]]
        images = [image_transforms(image) for image in images]

        conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]
        conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]

        examples["pixel_values"] = images
        examples["conditioning_pixel_values"] = conditioning_images
        examples["input_ids"] = tokenize_captions(examples)

        return examples

    if jax.process_index() == 0:
        if args.max_train_samples is not None:
623
624
625
626
            if args.streaming:
                dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples)
            else:
                dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
627
        # Set the training transforms
628
629
630
631
632
633
634
635
636
        if args.streaming:
            train_dataset = dataset["train"].map(
                preprocess_train,
                batched=True,
                batch_size=batch_size,
                remove_columns=list(dataset["train"].features.keys()),
            )
        else:
            train_dataset = dataset["train"].with_transform(preprocess_train)
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

    return train_dataset


def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
    conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.stack([example["input_ids"] for example in examples])

    batch = {
        "pixel_values": pixel_values,
        "conditioning_pixel_values": conditioning_pixel_values,
        "input_ids": input_ids,
    }
    batch = {k: v.numpy() for k, v in batch.items()}
    return batch


def get_params_to_save(params):
    return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))


def main():
    args = parse_args()

666
667
668
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
669
            " Please use `hf auth login` to authenticate with the Hub."
670
671
        )

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    # wandb init
    if jax.process_index() == 0 and args.report_to == "wandb":
        wandb.init(
687
            entity=args.wandb_entity,
688
689
690
691
692
693
694
695
696
697
698
699
            project=args.tracker_project_name,
            job_type="train",
            config=args,
        )

    if args.seed is not None:
        set_seed(args.seed)

    rng = jax.random.PRNGKey(0)

    # Handle the repository creation
    if jax.process_index() == 0:
700
        if args.output_dir is not None:
701
702
            os.makedirs(args.output_dir, exist_ok=True)

703
704
705
706
707
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

708
709
710
711
712
713
714
715
716
717
718
719
    # Load the tokenizer and add the placeholder token as a additional special token
    if args.tokenizer_name:
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
    elif args.pretrained_model_name_or_path:
        tokenizer = CLIPTokenizer.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
        )
    else:
        raise NotImplementedError("No tokenizer specified!")

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps
720
    train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size)
721
722
723

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
724
        shuffle=not args.streaming,
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
        collate_fn=collate_fn,
        batch_size=total_train_batch_size,
        num_workers=args.dataloader_num_workers,
        drop_last=True,
    )

    weight_dtype = jnp.float32
    if args.mixed_precision == "fp16":
        weight_dtype = jnp.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = jnp.bfloat16

    # Load models and create wrapper for stable diffusion
    text_encoder = FlaxCLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        dtype=weight_dtype,
        revision=args.revision,
        from_pt=args.from_pt,
    )
    vae, vae_params = FlaxAutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        revision=args.revision,
        subfolder="vae",
        dtype=weight_dtype,
        from_pt=args.from_pt,
    )
    unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet",
        dtype=weight_dtype,
        revision=args.revision,
        from_pt=args.from_pt,
    )

    if args.controlnet_model_name_or_path:
        logger.info("Loading existing controlnet weights")
        controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
763
764
765
766
            args.controlnet_model_name_or_path,
            revision=args.controlnet_revision,
            from_pt=args.controlnet_from_pt,
            dtype=jnp.float32,
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        )
    else:
        logger.info("Initializing controlnet weights from unet")
        rng, rng_params = jax.random.split(rng)

        controlnet = FlaxControlNetModel(
            in_channels=unet.config.in_channels,
            down_block_types=unet.config.down_block_types,
            only_cross_attention=unet.config.only_cross_attention,
            block_out_channels=unet.config.block_out_channels,
            layers_per_block=unet.config.layers_per_block,
            attention_head_dim=unet.config.attention_head_dim,
            cross_attention_dim=unet.config.cross_attention_dim,
            use_linear_projection=unet.config.use_linear_projection,
            flip_sin_to_cos=unet.config.flip_sin_to_cos,
            freq_shift=unet.config.freq_shift,
        )
        controlnet_params = controlnet.init_weights(rng=rng_params)
        controlnet_params = unfreeze(controlnet_params)
        for key in [
            "conv_in",
            "time_embedding",
            "down_blocks_0",
            "down_blocks_1",
            "down_blocks_2",
            "down_blocks_3",
            "mid_block",
        ]:
            controlnet_params[key] = unet_params[key]

797
798
799
800
801
802
803
804
805
806
807
    pipeline, pipeline_params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
        controlnet=controlnet,
        safety_checker=None,
        dtype=weight_dtype,
        revision=args.revision,
        from_pt=args.from_pt,
    )
    pipeline_params = jax_utils.replicate(pipeline_params)

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    # Optimization
    if args.scale_lr:
        args.learning_rate = args.learning_rate * total_train_batch_size

    constant_scheduler = optax.constant_schedule(args.learning_rate)

    adamw = optax.adamw(
        learning_rate=constant_scheduler,
        b1=args.adam_beta1,
        b2=args.adam_beta2,
        eps=args.adam_epsilon,
        weight_decay=args.adam_weight_decay,
    )

    optimizer = optax.chain(
        optax.clip_by_global_norm(args.max_grad_norm),
        adamw,
    )

    state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer)

    noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="scheduler"
    )

    # Initialize our training
    validation_rng, train_rngs = jax.random.split(rng)
    train_rngs = jax.random.split(train_rngs, jax.local_device_count())

837
838
839
840
841
842
843
844
845
846
847
848
849
850
    def compute_snr(timesteps):
        """
        Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
        """
        alphas_cumprod = noise_scheduler_state.common.alphas_cumprod
        sqrt_alphas_cumprod = alphas_cumprod**0.5
        sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

        alpha = sqrt_alphas_cumprod[timesteps]
        sigma = sqrt_one_minus_alphas_cumprod[timesteps]
        # Compute SNR.
        snr = (alpha / sigma) ** 2
        return snr

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng):
        # reshape batch, add grad_step_dim if gradient_accumulation_steps > 1
        if args.gradient_accumulation_steps > 1:
            grad_steps = args.gradient_accumulation_steps
            batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch)

        def compute_loss(params, minibatch, sample_rng):
            # Convert images to latent space
            vae_outputs = vae.apply(
                {"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode
            )
            latents = vae_outputs.latent_dist.sample(sample_rng)
            # (NHWC) -> (NCHW)
            latents = jnp.transpose(latents, (0, 3, 1, 2))
            latents = latents * vae.config.scaling_factor

            # Sample noise that we'll add to the latents
            noise_rng, timestep_rng = jax.random.split(sample_rng)
            noise = jax.random.normal(noise_rng, latents.shape)
            # Sample a random timestep for each image
            bsz = latents.shape[0]
            timesteps = jax.random.randint(
                timestep_rng,
                (bsz,),
                0,
                noise_scheduler.config.num_train_timesteps,
            )

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)

            # Get the text embedding for conditioning
            encoder_hidden_states = text_encoder(
                minibatch["input_ids"],
                params=text_encoder_params,
                train=False,
            )[0]

            controlnet_cond = minibatch["conditioning_pixel_values"]

            # Predict the noise residual and compute loss
            down_block_res_samples, mid_block_res_sample = controlnet.apply(
                {"params": params},
                noisy_latents,
                timesteps,
                encoder_hidden_states,
                controlnet_cond,
                train=True,
                return_dict=False,
            )

            model_pred = unet.apply(
                {"params": unet_params},
                noisy_latents,
                timesteps,
                encoder_hidden_states,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
            ).sample

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

            loss = (target - model_pred) ** 2
921
922
923

            if args.snr_gamma is not None:
                snr = jnp.array(compute_snr(timesteps))
924
925
926
927
928
929
                snr_loss_weights = jnp.where(snr < args.snr_gamma, snr, jnp.ones_like(snr) * args.snr_gamma)
                if noise_scheduler.config.prediction_type == "epsilon":
                    snr_loss_weights = snr_loss_weights / snr
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    snr_loss_weights = snr_loss_weights / (snr + 1)

930
931
                loss = loss * snr_loss_weights

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
            loss = loss.mean()

            return loss

        grad_fn = jax.value_and_grad(compute_loss)

        # get a minibatch (one gradient accumulation slice)
        def get_minibatch(batch, grad_idx):
            return jax.tree_util.tree_map(
                lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False),
                batch,
            )

        def loss_and_grad(grad_idx, train_rng):
            # create minibatch for the grad step
            minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch
            sample_rng, train_rng = jax.random.split(train_rng, 2)
            loss, grad = grad_fn(state.params, minibatch, sample_rng)
            return loss, grad, train_rng

        if args.gradient_accumulation_steps == 1:
            loss, grad, new_train_rng = loss_and_grad(None, train_rng)
        else:
            init_loss_grad_rng = (
                0.0,  # initial value for cumul_loss
                jax.tree_map(jnp.zeros_like, state.params),  # initial value for cumul_grad
                train_rng,  # initial value for train_rng
            )

            def cumul_grad_step(grad_idx, loss_grad_rng):
                cumul_loss, cumul_grad, train_rng = loss_grad_rng
                loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng)
                cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad))
                return cumul_loss, cumul_grad, new_train_rng

            loss, grad, new_train_rng = jax.lax.fori_loop(
                0,
                args.gradient_accumulation_steps,
                cumul_grad_step,
                init_loss_grad_rng,
            )
            loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad))

        grad = jax.lax.pmean(grad, "batch")

        new_state = state.apply_gradients(grads=grad)

        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

982
983
984
985
986
        def l2(xs):
            return jnp.sqrt(sum([jnp.vdot(x, x) for x in jax.tree_util.tree_leaves(xs)]))

        metrics["l2_grads"] = l2(jax.tree_util.tree_leaves(grad))

987
988
989
990
991
992
993
994
995
996
997
998
        return new_state, metrics, new_train_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)
    unet_params = jax_utils.replicate(unet_params)
    text_encoder_params = jax_utils.replicate(text_encoder.params)
    vae_params = jax_utils.replicate(vae_params)

    # Train!
999
1000
1001
1002
1003
    if args.streaming:
        dataset_length = args.max_train_samples
    else:
        dataset_length = len(train_dataloader)
    num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps)
1004
1005
1006
1007
1008
1009
1010
1011

    # Scheduler and math around the number of training steps.
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    logger.info("***** Running training *****")
1012
    logger.info(f"  Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}")
1013
1014
1015
1016
1017
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
    logger.info(f"  Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}")

1018
    if jax.process_index() == 0 and args.report_to == "wandb":
1019
        wandb.define_metric("*", step_metric="train/step")
1020
        wandb.define_metric("train/step", step_metric="walltime")
1021
1022
        wandb.config.update(
            {
1023
                "num_train_examples": args.max_train_samples if args.streaming else len(train_dataset),
1024
1025
1026
                "total_train_batch_size": total_train_batch_size,
                "total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch,
                "num_devices": jax.device_count(),
1027
                "controlnet_params": sum(np.prod(x.shape) for x in jax.tree_util.tree_leaves(state.params)),
1028
1029
1030
            }
        )

1031
    global_step = step0 = 0
1032
1033
1034
1035
1036
1037
    epochs = tqdm(
        range(args.num_train_epochs),
        desc="Epoch ... ",
        position=0,
        disable=jax.process_index() > 0,
    )
1038
1039
1040
    if args.profile_memory:
        jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_initial.prof"))
    t00 = t0 = time.monotonic()
1041
1042
1043
1044
    for epoch in epochs:
        # ======================== Training ================================

        train_metrics = []
1045
        train_metric = None
1046

1047
1048
        steps_per_epoch = (
            args.max_train_samples // total_train_batch_size
1049
            if args.streaming or args.max_train_samples
1050
1051
            else len(train_dataset) // total_train_batch_size
        )
1052
1053
1054
1055
1056
1057
1058
1059
1060
        train_step_progress_bar = tqdm(
            total=steps_per_epoch,
            desc="Training...",
            position=1,
            leave=False,
            disable=jax.process_index() > 0,
        )
        # train
        for batch in train_dataloader:
1061
1062
1063
1064
1065
1066
1067
            if args.profile_steps and global_step == 1:
                train_metric["loss"].block_until_ready()
                jax.profiler.start_trace(args.output_dir)
            if args.profile_steps and global_step == 1 + args.profile_steps:
                train_metric["loss"].block_until_ready()
                jax.profiler.stop_trace()

1068
            batch = shard(batch)
1069
1070
1071
1072
            with jax.profiler.StepTraceAnnotation("train", step_num=global_step):
                state, train_metric, train_rngs = p_train_step(
                    state, unet_params, text_encoder_params, vae_params, batch, train_rngs
                )
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            train_metrics.append(train_metric)

            train_step_progress_bar.update(1)

            global_step += 1
            if global_step >= args.max_train_steps:
                break

            if (
                args.validation_prompt is not None
                and global_step % args.validation_steps == 0
                and jax.process_index() == 0
            ):
Patrick von Platen's avatar
Patrick von Platen committed
1086
1087
1088
                _ = log_validation(
                    pipeline, pipeline_params, state.params, tokenizer, args, validation_rng, weight_dtype
                )
1089
1090
1091

            if global_step % args.logging_steps == 0 and jax.process_index() == 0:
                if args.report_to == "wandb":
1092
1093
                    train_metrics = jax_utils.unreplicate(train_metrics)
                    train_metrics = jax.tree_util.tree_map(lambda *m: jnp.array(m).mean(), *train_metrics)
1094
1095
                    wandb.log(
                        {
1096
                            "walltime": time.monotonic() - t00,
1097
                            "train/step": global_step,
1098
1099
1100
                            "train/epoch": global_step / dataset_length,
                            "train/steps_per_sec": (global_step - step0) / (time.monotonic() - t0),
                            **{f"train/{k}": v for k, v in train_metrics.items()},
1101
1102
                        }
                    )
1103
1104
                t0, step0 = time.monotonic(), global_step
                train_metrics = []
1105
1106
1107
1108
1109
            if global_step % args.checkpointing_steps == 0 and jax.process_index() == 0:
                controlnet.save_pretrained(
                    f"{args.output_dir}/{global_step}",
                    params=get_params_to_save(state.params),
                )
1110
1111
1112
1113
1114

        train_metric = jax_utils.unreplicate(train_metric)
        train_step_progress_bar.close()
        epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")

1115
    # Final validation & store model.
1116
    if jax.process_index() == 0:
1117
        if args.validation_prompt is not None:
1118
1119
            if args.profile_validation:
                jax.profiler.start_trace(args.output_dir)
Patrick von Platen's avatar
Patrick von Platen committed
1120
1121
1122
            image_logs = log_validation(
                pipeline, pipeline_params, state.params, tokenizer, args, validation_rng, weight_dtype
            )
1123
1124
            if args.profile_validation:
                jax.profiler.stop_trace()
1125
1126
        else:
            image_logs = None
1127
1128
1129
1130
1131
1132
1133
1134

        controlnet.save_pretrained(
            args.output_dir,
            params=get_params_to_save(state.params),
        )

        if args.push_to_hub:
            save_model_card(
1135
                repo_id,
1136
1137
1138
1139
                image_logs=image_logs,
                base_model=args.pretrained_model_name_or_path,
                repo_folder=args.output_dir,
            )
1140
1141
1142
1143
1144
1145
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1146

1147
1148
1149
1150
    if args.profile_memory:
        jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_final.prof"))
    logger.info("Finished training.")

1151
1152
1153

if __name__ == "__main__":
    main()