test_pixart.py 14.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    PixArtSigmaPipeline,
28
    PixArtTransformer2DModel,
29
30
)
from diffusers.utils.testing_utils import (
31
    backend_empty_cache,
32
33
    enable_full_determinism,
    numpy_cosine_similarity_distance,
34
    require_torch_accelerator,
35
36
37
38
39
    slow,
    torch_device,
)

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
40
41
42
43
44
45
from ..test_pipelines_common import (
    PipelineTesterMixin,
    check_qkv_fusion_matches_attn_procs_length,
    check_qkv_fusion_processors_exist,
    to_np,
)
46
47
48
49
50
51
52
53
54
55
56
57
58


enable_full_determinism()


class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = PixArtSigmaPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params
Aryan's avatar
Aryan committed
59
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
60
    test_group_offloading = True
61
62
63

    def get_dummy_components(self):
        torch.manual_seed(0)
64
        transformer = PixArtTransformer2DModel(
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            sample_size=8,
            num_layers=2,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            caption_channels=32,
            in_channels=4,
            cross_attention_dim=24,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_single",
            norm_elementwise_affine=False,
            norm_eps=1e-6,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL()

        scheduler = DDIMScheduler()
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "use_resolution_binning": False,
            "output_type": "np",
        }
        return inputs

113
    @unittest.skip("Not supported.")
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(PVP, Sayak) need to fix later
        return

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 8, 8, 3))
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852])
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_inference_non_square_images(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs, height=32, width=48).images
        image_slice = image[0, -3:, -3:, -1]
        self.assertEqual(image.shape, (1, 32, 48, 3))

        expected_slice = np.array([0.6493, 0.5370, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263])
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_inference_with_embeddings_and_multiple_images(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt)

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
            "prompt_attention_mask": prompt_attn_mask,
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
            "use_resolution_binning": False,
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
            "prompt_attention_mask": prompt_attn_mask,
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
            "use_resolution_binning": False,
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

    def test_inference_with_multiple_images_per_prompt(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["num_images_per_prompt"] = 2
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (2, 8, 8, 3))
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852])
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
        assert check_qkv_fusion_processors_exist(
            pipe.transformer
        ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
        assert check_qkv_fusion_matches_attn_procs_length(
            pipe.transformer, pipe.transformer.original_attn_processors
        ), "Something wrong with the attention processors concerning the fused QKV projections."

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

285
286

@slow
287
@require_torch_accelerator
288
289
290
291
292
293
294
295
class PixArtSigmaPipelineIntegrationTests(unittest.TestCase):
    ckpt_id_1024 = "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS"
    ckpt_id_512 = "PixArt-alpha/PixArt-Sigma-XL-2-512-MS"
    prompt = "A small cactus with a happy face in the Sahara desert."

    def setUp(self):
        super().setUp()
        gc.collect()
296
        backend_empty_cache(torch_device)
297
298
299
300

    def tearDown(self):
        super().tearDown()
        gc.collect()
301
        backend_empty_cache(torch_device)
302
303
304
305
306

    def test_pixart_1024(self):
        generator = torch.Generator("cpu").manual_seed(0)

        pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
307
        pipe.enable_model_cpu_offload(device=torch_device)
308
309
310
311
312
        prompt = self.prompt

        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1]
313
        expected_slice = np.array([0.4517, 0.4446, 0.4375, 0.449, 0.4399, 0.4365, 0.4583, 0.4629, 0.4473])
314
315
316
317
318
319
320

        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)

    def test_pixart_512(self):
        generator = torch.Generator("cpu").manual_seed(0)

321
        transformer = PixArtTransformer2DModel.from_pretrained(
322
323
324
325
326
            self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16
        )
        pipe = PixArtSigmaPipeline.from_pretrained(
            self.ckpt_id_1024, transformer=transformer, torch_dtype=torch.float16
        )
327
        pipe.enable_model_cpu_offload(device=torch_device)
328
329
330
331
332
333

        prompt = self.prompt

        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1]
334
        expected_slice = np.array([0.0479, 0.0378, 0.0217, 0.0942, 0.064, 0.0791, 0.2073, 0.1975, 0.2017])
335
336
337
338
339
340
341
342

        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)

    def test_pixart_1024_without_resolution_binning(self):
        generator = torch.manual_seed(0)

        pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
343
        pipe.enable_model_cpu_offload(device=torch_device)
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

        prompt = self.prompt
        height, width = 1024, 768
        num_inference_steps = 2

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]

        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)

    def test_pixart_512_without_resolution_binning(self):
        generator = torch.manual_seed(0)

376
        transformer = PixArtTransformer2DModel.from_pretrained(
377
378
379
380
381
            self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16
        )
        pipe = PixArtSigmaPipeline.from_pretrained(
            self.ckpt_id_1024, transformer=transformer, torch_dtype=torch.float16
        )
382
        pipe.enable_model_cpu_offload(device=torch_device)
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        prompt = self.prompt
        height, width = 512, 768
        num_inference_steps = 2

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]

        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)