"megatron/legacy/model/classification.py" did not exist on "b7f1b05071b041309f36698d197eaae54b9fcbea"
test_pag_sdxl.py 14.1 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import inspect
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    AutoPipelineForText2Image,
    EulerDiscreteScheduler,
    StableDiffusionXLPAGPipeline,
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
33
    backend_empty_cache,
YiYi Xu's avatar
YiYi Xu committed
34
    enable_full_determinism,
35
    require_torch_accelerator,
YiYi Xu's avatar
YiYi Xu committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    slow,
    torch_device,
)

from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineFromPipeTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)


enable_full_determinism()


class StableDiffusionXLPAGPipelineFastTests(
    PipelineTesterMixin,
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineFromPipeTesterMixin,
    unittest.TestCase,
):
    pipeline_class = StableDiffusionXLPAGPipeline
    params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"})

    def get_dummy_components(self, time_cond_proj_dim=None):
        # Copied from tests.pipelines.stable_diffusion_xl.test_stable_diffusion_xl.StableDiffusionXLPipelineFastTests.get_dummy_components
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(2, 4),
            layers_per_block=2,
            time_cond_proj_dim=time_cond_proj_dim,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
            norm_num_groups=1,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            "image_encoder": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "pag_scale": 0.9,
            "output_type": "np",
        }
        return inputs

    def test_pag_disable_enable(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # base  pipeline (expect same output when pag is disabled)
        pipe_sd = StableDiffusionXLPipeline(**components)
        pipe_sd = pipe_sd.to(device)
        pipe_sd.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["pag_scale"]
        assert (
            "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
Aryan's avatar
Aryan committed
172
        ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
YiYi Xu's avatar
YiYi Xu committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        out = pipe_sd(**inputs).images[0, -3:, -3:, -1]

        # pag disabled with pag_scale=0.0
        pipe_pag = self.pipeline_class(**components)
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["pag_scale"] = 0.0
        out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        # pag enabled
        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
        assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3

    def test_pag_applied_layers(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # base pipeline
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        # pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers
        all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k]
        original_attn_procs = pipe.unet.attn_processors
        pag_layers = ["mid", "down", "up"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert set(pipe.pag_attn_processors) == set(all_self_attn_layers)

        # pag_applied_layers = ["mid"], or ["mid.block_0"] or ["mid.block_0.attentions_0"] should apply to all self-attention layers in mid_block, i.e.
        # mid_block.attentions.0.transformer_blocks.0.attn1.processor
        # mid_block.attentions.0.transformer_blocks.1.attn1.processor
        all_self_attn_mid_layers = [
            "mid_block.attentions.0.transformer_blocks.0.attn1.processor",
            "mid_block.attentions.0.transformer_blocks.1.attn1.processor",
        ]
        pipe.unet.set_attn_processor(original_attn_procs.copy())
        pag_layers = ["mid"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)

        pipe.unet.set_attn_processor(original_attn_procs.copy())
224
        pag_layers = ["mid_block"]
YiYi Xu's avatar
YiYi Xu committed
225
226
227
228
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)

        pipe.unet.set_attn_processor(original_attn_procs.copy())
229
        pag_layers = ["mid_block.attentions.0"]
YiYi Xu's avatar
YiYi Xu committed
230
231
232
233
234
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)

        # pag_applied_layers = ["mid.block_0.attentions_1"] does not exist in the model
        pipe.unet.set_attn_processor(original_attn_procs.copy())
235
        pag_layers = ["mid_block.attentions.1"]
YiYi Xu's avatar
YiYi Xu committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        with self.assertRaises(ValueError):
            pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)

        # pag_applied_layers = "down" should apply to all self-attention layers in down_blocks
        # down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor
        # down_blocks.1.attentions.0.transformer_blocks.1.attn1.processor
        # down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor
        # down_blocks.1.attentions.1.transformer_blocks.1.attn1.processor
        pipe.unet.set_attn_processor(original_attn_procs.copy())
        pag_layers = ["down"]
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert len(pipe.pag_attn_processors) == 4

        pipe.unet.set_attn_processor(original_attn_procs.copy())
250
        pag_layers = ["down_blocks.0"]
YiYi Xu's avatar
YiYi Xu committed
251
252
253
254
        with self.assertRaises(ValueError):
            pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)

        pipe.unet.set_attn_processor(original_attn_procs.copy())
255
        pag_layers = ["down_blocks.1"]
YiYi Xu's avatar
YiYi Xu committed
256
257
258
259
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert len(pipe.pag_attn_processors) == 4

        pipe.unet.set_attn_processor(original_attn_procs.copy())
260
        pag_layers = ["down_blocks.1.attentions.1"]
YiYi Xu's avatar
YiYi Xu committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
        assert len(pipe.pag_attn_processors) == 2

    def test_pag_inference(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe_pag(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (
            1,
            64,
            64,
            3,
        ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
282
        expected_slice = np.array([0.5382, 0.5439, 0.4704, 0.4569, 0.5234, 0.4834, 0.5289, 0.5039, 0.4764])
YiYi Xu's avatar
YiYi Xu committed
283
284
285
286

        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

287
288
289
290
    @unittest.skip("We test this functionality elsewhere already.")
    def test_save_load_optional_components(self):
        pass

YiYi Xu's avatar
YiYi Xu committed
291
292

@slow
293
@require_torch_accelerator
YiYi Xu's avatar
YiYi Xu committed
294
295
296
297
298
299
300
class StableDiffusionXLPAGPipelineIntegrationTests(unittest.TestCase):
    pipeline_class = StableDiffusionXLPAGPipeline
    repo_id = "stabilityai/stable-diffusion-xl-base-1.0"

    def setUp(self):
        super().setUp()
        gc.collect()
301
        backend_empty_cache(torch_device)
YiYi Xu's avatar
YiYi Xu committed
302
303
304
305

    def tearDown(self):
        super().tearDown()
        gc.collect()
306
        backend_empty_cache(torch_device)
YiYi Xu's avatar
YiYi Xu committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

    def get_inputs(self, device, generator_device="cpu", seed=0, guidance_scale=7.0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a polar bear sitting in a chair drinking a milkshake",
            "negative_prompt": "deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": guidance_scale,
            "pag_scale": 3.0,
            "output_type": "np",
        }
        return inputs

    def test_pag_cfg(self):
        pipeline = AutoPipelineForText2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
323
        pipeline.enable_model_cpu_offload(device=torch_device)
YiYi Xu's avatar
YiYi Xu committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        pipeline.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipeline(**inputs).images

        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 1024, 1024, 3)
        expected_slice = np.array(
            [0.3123679, 0.31725878, 0.32026544, 0.327533, 0.3266391, 0.3303998, 0.33544615, 0.34181812, 0.34102726]
        )
        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
        ), f"output is different from expected, {image_slice.flatten()}"

    def test_pag_uncond(self):
        pipeline = AutoPipelineForText2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
340
        pipeline.enable_model_cpu_offload(device=torch_device)
YiYi Xu's avatar
YiYi Xu committed
341
342
343
344
345
346
347
348
349
350
351
352
353
        pipeline.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device, guidance_scale=0.0)
        image = pipeline(**inputs).images

        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 1024, 1024, 3)
        expected_slice = np.array(
            [0.47400922, 0.48650584, 0.4839625, 0.4724013, 0.4890427, 0.49544555, 0.51707107, 0.54299414, 0.5224372]
        )
        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
        ), f"output is different from expected, {image_slice.flatten()}"