"vscode:/vscode.git/clone" did not exist on "3d9498dc957d0c9024a50bc3473d2f332c87368f"
pipeline_grad_tts.py 17.8 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
3
4
5
6
7
""" from https://github.com/jaywalnut310/glow-tts """

import math

import torch
from torch import nn

patil-suraj's avatar
style  
patil-suraj committed
8
9
import tqdm
from diffusers import DiffusionPipeline
patil-suraj's avatar
patil-suraj committed
10
11
from diffusers.configuration_utils import ConfigMixin
from diffusers.modeling_utils import ModelMixin
patil-suraj's avatar
patil-suraj committed
12

patil-suraj's avatar
style  
patil-suraj committed
13
from .grad_tts_utils import GradTTSTokenizer  # flake8: noqa
patil-suraj's avatar
patil-suraj committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


def sequence_mask(length, max_length=None):
    if max_length is None:
        max_length = length.max()
    x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
    return x.unsqueeze(0) < length.unsqueeze(1)


def fix_len_compatibility(length, num_downsamplings_in_unet=2):
    while True:
        if length % (2**num_downsamplings_in_unet) == 0:
            return length
        length += 1


def convert_pad_shape(pad_shape):
    l = pad_shape[::-1]
    pad_shape = [item for sublist in l for item in sublist]
    return pad_shape


def generate_path(duration, mask):
    device = duration.device

    b, t_x, t_y = mask.shape
    cum_duration = torch.cumsum(duration, 1)
    path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)

    cum_duration_flat = cum_duration.view(b * t_x)
    path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
    path = path.view(b, t_x, t_y)
46
    path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
patil-suraj's avatar
patil-suraj committed
47
48
49
50
51
    path = path * mask
    return path


def duration_loss(logw, logw_, lengths):
52
    loss = torch.sum((logw - logw_) ** 2) / torch.sum(lengths)
patil-suraj's avatar
patil-suraj committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    return loss


class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-4):
        super(LayerNorm, self).__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = torch.nn.Parameter(torch.ones(channels))
        self.beta = torch.nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        n_dims = len(x.shape)
        mean = torch.mean(x, 1, keepdim=True)
68
        variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
patil-suraj's avatar
patil-suraj committed
69
70
71
72
73
74
75
76
77

        x = (x - mean) * torch.rsqrt(variance + self.eps)

        shape = [1, -1] + [1] * (n_dims - 2)
        x = x * self.gamma.view(*shape) + self.beta.view(*shape)
        return x


class ConvReluNorm(nn.Module):
78
    def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
patil-suraj's avatar
patil-suraj committed
79
80
81
82
83
84
85
86
87
88
        super(ConvReluNorm, self).__init__()
        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.p_dropout = p_dropout

        self.conv_layers = torch.nn.ModuleList()
        self.norm_layers = torch.nn.ModuleList()
89
        self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
patil-suraj's avatar
patil-suraj committed
90
91
92
        self.norm_layers.append(LayerNorm(hidden_channels))
        self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
        for _ in range(n_layers - 1):
93
94
95
            self.conv_layers.append(
                torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
            )
patil-suraj's avatar
patil-suraj committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
            self.norm_layers.append(LayerNorm(hidden_channels))
        self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
        self.proj.weight.data.zero_()
        self.proj.bias.data.zero_()

    def forward(self, x, x_mask):
        x_org = x
        for i in range(self.n_layers):
            x = self.conv_layers[i](x * x_mask)
            x = self.norm_layers[i](x)
            x = self.relu_drop(x)
        x = x_org + self.proj(x)
        return x * x_mask


class DurationPredictor(nn.Module):
    def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
        super(DurationPredictor, self).__init__()
        self.in_channels = in_channels
        self.filter_channels = filter_channels
        self.p_dropout = p_dropout

        self.drop = torch.nn.Dropout(p_dropout)
119
        self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
patil-suraj's avatar
patil-suraj committed
120
        self.norm_1 = LayerNorm(filter_channels)
121
        self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
patil-suraj's avatar
patil-suraj committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        self.norm_2 = LayerNorm(filter_channels)
        self.proj = torch.nn.Conv1d(filter_channels, 1, 1)

    def forward(self, x, x_mask):
        x = self.conv_1(x * x_mask)
        x = torch.relu(x)
        x = self.norm_1(x)
        x = self.drop(x)
        x = self.conv_2(x * x_mask)
        x = torch.relu(x)
        x = self.norm_2(x)
        x = self.drop(x)
        x = self.proj(x * x_mask)
        return x * x_mask


class MultiHeadAttention(nn.Module):
139
140
141
142
143
144
145
146
147
148
149
    def __init__(
        self,
        channels,
        out_channels,
        n_heads,
        window_size=None,
        heads_share=True,
        p_dropout=0.0,
        proximal_bias=False,
        proximal_init=False,
    ):
patil-suraj's avatar
patil-suraj committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        super(MultiHeadAttention, self).__init__()
        assert channels % n_heads == 0

        self.channels = channels
        self.out_channels = out_channels
        self.n_heads = n_heads
        self.window_size = window_size
        self.heads_share = heads_share
        self.proximal_bias = proximal_bias
        self.p_dropout = p_dropout
        self.attn = None

        self.k_channels = channels // n_heads
        self.conv_q = torch.nn.Conv1d(channels, channels, 1)
        self.conv_k = torch.nn.Conv1d(channels, channels, 1)
        self.conv_v = torch.nn.Conv1d(channels, channels, 1)
        if window_size is not None:
            n_heads_rel = 1 if heads_share else n_heads
            rel_stddev = self.k_channels**-0.5
169
170
171
172
173
174
            self.emb_rel_k = torch.nn.Parameter(
                torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev
            )
            self.emb_rel_v = torch.nn.Parameter(
                torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev
            )
patil-suraj's avatar
patil-suraj committed
175
176
177
178
179
180
181
182
183
        self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
        self.drop = torch.nn.Dropout(p_dropout)

        torch.nn.init.xavier_uniform_(self.conv_q.weight)
        torch.nn.init.xavier_uniform_(self.conv_k.weight)
        if proximal_init:
            self.conv_k.weight.data.copy_(self.conv_q.weight.data)
            self.conv_k.bias.data.copy_(self.conv_q.bias.data)
        torch.nn.init.xavier_uniform_(self.conv_v.weight)
184

patil-suraj's avatar
patil-suraj committed
185
186
187
188
    def forward(self, x, c, attn_mask=None):
        q = self.conv_q(x)
        k = self.conv_k(c)
        v = self.conv_v(c)
189

patil-suraj's avatar
patil-suraj committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        x, self.attn = self.attention(q, k, v, mask=attn_mask)

        x = self.conv_o(x)
        return x

    def attention(self, query, key, value, mask=None):
        b, d, t_s, t_t = (*key.size(), query.size(2))
        query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
        key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
        value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)

        scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
        if self.window_size is not None:
            assert t_s == t_t, "Relative attention is only available for self-attention."
            key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
            rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
            rel_logits = self._relative_position_to_absolute_position(rel_logits)
            scores_local = rel_logits / math.sqrt(self.k_channels)
            scores = scores + scores_local
        if self.proximal_bias:
            assert t_s == t_t, "Proximal bias is only available for self-attention."
211
            scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
patil-suraj's avatar
patil-suraj committed
212
213
214
215
216
217
218
219
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e4)
        p_attn = torch.nn.functional.softmax(scores, dim=-1)
        p_attn = self.drop(p_attn)
        output = torch.matmul(p_attn, value)
        if self.window_size is not None:
            relative_weights = self._absolute_position_to_relative_position(p_attn)
            value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
220
            output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
patil-suraj's avatar
patil-suraj committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        output = output.transpose(2, 3).contiguous().view(b, d, t_t)
        return output, p_attn

    def _matmul_with_relative_values(self, x, y):
        ret = torch.matmul(x, y.unsqueeze(0))
        return ret

    def _matmul_with_relative_keys(self, x, y):
        ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
        return ret

    def _get_relative_embeddings(self, relative_embeddings, length):
        pad_length = max(length - (self.window_size + 1), 0)
        slice_start_position = max((self.window_size + 1) - length, 0)
        slice_end_position = slice_start_position + 2 * length - 1
        if pad_length > 0:
            padded_relative_embeddings = torch.nn.functional.pad(
238
239
                relative_embeddings, convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])
            )
patil-suraj's avatar
patil-suraj committed
240
241
        else:
            padded_relative_embeddings = relative_embeddings
242
        used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
patil-suraj's avatar
patil-suraj committed
243
244
245
246
        return used_relative_embeddings

    def _relative_position_to_absolute_position(self, x):
        batch, heads, length, _ = x.size()
247
        x = torch.nn.functional.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
patil-suraj's avatar
patil-suraj committed
248
        x_flat = x.view([batch, heads, length * 2 * length])
249
250
        x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
        x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
patil-suraj's avatar
patil-suraj committed
251
252
253
254
        return x_final

    def _absolute_position_to_relative_position(self, x):
        batch, heads, length, _ = x.size()
255
256
        x = torch.nn.functional.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
        x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
patil-suraj's avatar
patil-suraj committed
257
        x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
258
        x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
patil-suraj's avatar
patil-suraj committed
259
260
261
262
263
264
265
266
267
        return x_final

    def _attention_bias_proximal(self, length):
        r = torch.arange(length, dtype=torch.float32)
        diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
        return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)


class FFN(nn.Module):
268
    def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
patil-suraj's avatar
patil-suraj committed
269
270
271
272
273
274
275
        super(FFN, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.filter_channels = filter_channels
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout

276
277
        self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
        self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
patil-suraj's avatar
patil-suraj committed
278
279
280
281
282
283
284
285
286
287
288
        self.drop = torch.nn.Dropout(p_dropout)

    def forward(self, x, x_mask):
        x = self.conv_1(x * x_mask)
        x = torch.relu(x)
        x = self.drop(x)
        x = self.conv_2(x * x_mask)
        return x * x_mask


class Encoder(nn.Module):
289
290
291
292
293
294
295
296
297
298
299
    def __init__(
        self,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size=1,
        p_dropout=0.0,
        window_size=None,
        **kwargs,
    ):
patil-suraj's avatar
patil-suraj committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        super(Encoder, self).__init__()
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.window_size = window_size

        self.drop = torch.nn.Dropout(p_dropout)
        self.attn_layers = torch.nn.ModuleList()
        self.norm_layers_1 = torch.nn.ModuleList()
        self.ffn_layers = torch.nn.ModuleList()
        self.norm_layers_2 = torch.nn.ModuleList()
        for _ in range(self.n_layers):
315
316
317
318
319
            self.attn_layers.append(
                MultiHeadAttention(
                    hidden_channels, hidden_channels, n_heads, window_size=window_size, p_dropout=p_dropout
                )
            )
patil-suraj's avatar
patil-suraj committed
320
            self.norm_layers_1.append(LayerNorm(hidden_channels))
321
322
323
            self.ffn_layers.append(
                FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)
            )
patil-suraj's avatar
patil-suraj committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            self.norm_layers_2.append(LayerNorm(hidden_channels))

    def forward(self, x, x_mask):
        attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
        for i in range(self.n_layers):
            x = x * x_mask
            y = self.attn_layers[i](x, x, attn_mask)
            y = self.drop(y)
            x = self.norm_layers_1[i](x + y)
            y = self.ffn_layers[i](x, x_mask)
            y = self.drop(y)
            x = self.norm_layers_2[i](x + y)
        x = x * x_mask
        return x


class TextEncoder(ModelMixin, ConfigMixin):
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    def __init__(
        self,
        n_vocab,
        n_feats,
        n_channels,
        filter_channels,
        filter_channels_dp,
        n_heads,
        n_layers,
        kernel_size,
        p_dropout,
        window_size=None,
        spk_emb_dim=64,
        n_spks=1,
    ):
patil-suraj's avatar
patil-suraj committed
356
357
        super(TextEncoder, self).__init__()

358
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
359
360
361
362
363
364
365
366
367
368
369
            n_vocab=n_vocab,
            n_feats=n_feats,
            n_channels=n_channels,
            filter_channels=filter_channels,
            filter_channels_dp=filter_channels_dp,
            n_heads=n_heads,
            n_layers=n_layers,
            kernel_size=kernel_size,
            p_dropout=p_dropout,
            window_size=window_size,
            spk_emb_dim=spk_emb_dim,
370
            n_spks=n_spks,
patil-suraj's avatar
patil-suraj committed
371
        )
372

patil-suraj's avatar
patil-suraj committed
373
374
375
376
377
378
379
380
381
382
383
384
        self.n_vocab = n_vocab
        self.n_feats = n_feats
        self.n_channels = n_channels
        self.filter_channels = filter_channels
        self.filter_channels_dp = filter_channels_dp
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.window_size = window_size
        self.spk_emb_dim = spk_emb_dim
        self.n_spks = n_spks
patil-suraj's avatar
style  
patil-suraj committed
385

patil-suraj's avatar
patil-suraj committed
386
387
388
        self.emb = torch.nn.Embedding(n_vocab, n_channels)
        torch.nn.init.normal_(self.emb.weight, 0.0, n_channels**-0.5)

389
        self.prenet = ConvReluNorm(n_channels, n_channels, n_channels, kernel_size=5, n_layers=3, p_dropout=0.5)
patil-suraj's avatar
patil-suraj committed
390

391
392
393
394
395
396
397
398
399
        self.encoder = Encoder(
            n_channels + (spk_emb_dim if n_spks > 1 else 0),
            filter_channels,
            n_heads,
            n_layers,
            kernel_size,
            p_dropout,
            window_size=window_size,
        )
patil-suraj's avatar
patil-suraj committed
400
401

        self.proj_m = torch.nn.Conv1d(n_channels + (spk_emb_dim if n_spks > 1 else 0), n_feats, 1)
402
403
404
        self.proj_w = DurationPredictor(
            n_channels + (spk_emb_dim if n_spks > 1 else 0), filter_channels_dp, kernel_size, p_dropout
        )
patil-suraj's avatar
patil-suraj committed
405

patil-suraj's avatar
style  
patil-suraj committed
406
    def forward(self, x, x_lengths, spk=None):
patil-suraj's avatar
patil-suraj committed
407
408
409
410
411
412
413
414
415
416
417
418
419
        x = self.emb(x) * math.sqrt(self.n_channels)
        x = torch.transpose(x, 1, -1)
        x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

        x = self.prenet(x, x_mask)
        if self.n_spks > 1:
            x = torch.cat([x, spk.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
        x = self.encoder(x, x_mask)
        mu = self.proj_m(x) * x_mask

        x_dp = torch.detach(x)
        logw = self.proj_w(x_dp, x_mask)

patil-suraj's avatar
patil-suraj committed
420
        return mu, logw, x_mask
patil-suraj's avatar
patil-suraj committed
421
422
423


class GradTTS(DiffusionPipeline):
patil-suraj's avatar
patil-suraj committed
424
    def __init__(self, unet, text_encoder, noise_scheduler, tokenizer):
patil-suraj's avatar
patil-suraj committed
425
426
        super().__init__()
        noise_scheduler = noise_scheduler.set_format("pt")
patil-suraj's avatar
style  
patil-suraj committed
427
428
429
430
        self.register_modules(
            unet=unet, text_encoder=text_encoder, noise_scheduler=noise_scheduler, tokenizer=tokenizer
        )

patil-suraj's avatar
patil-suraj committed
431
    @torch.no_grad()
patil-suraj's avatar
style  
patil-suraj committed
432
433
434
    def __call__(
        self, text, num_inference_steps=50, temperature=1.3, length_scale=0.91, speaker_id=15, torch_device=None
    ):
patil-suraj's avatar
patil-suraj committed
435
436
        if torch_device is None:
            torch_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
patil-suraj's avatar
style  
patil-suraj committed
437

patil-suraj's avatar
patil-suraj committed
438
439
        self.unet.to(torch_device)
        self.text_encoder.to(torch_device)
patil-suraj's avatar
style  
patil-suraj committed
440

patil-suraj's avatar
patil-suraj committed
441
        x, x_lengths = self.tokenizer(text)
patil-suraj's avatar
patil-suraj committed
442
443
        x = x.to(torch_device)
        x_lengths = x_lengths.to(torch_device)
patil-suraj's avatar
style  
patil-suraj committed
444

patil-suraj's avatar
patil-suraj committed
445
        if speaker_id is not None:
patil-suraj's avatar
style  
patil-suraj committed
446
447
            speaker_id = torch.LongTensor([speaker_id]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
448
449
        # Get encoder_outputs `mu_x` and log-scaled token durations `logw`
        mu_x, logw, x_mask = self.text_encoder(x, x_lengths)
patil-suraj's avatar
style  
patil-suraj committed
450

patil-suraj's avatar
patil-suraj committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        w = torch.exp(logw) * x_mask
        w_ceil = torch.ceil(w) * length_scale
        y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
        y_max_length = int(y_lengths.max())
        y_max_length_ = fix_len_compatibility(y_max_length)

        # Using obtained durations `w` construct alignment map `attn`
        y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
        attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
        attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)

        # Align encoded text and get mu_y
        mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
        mu_y = mu_y.transpose(1, 2)

        # Sample latent representation from terminal distribution N(mu_y, I)
        z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
patil-suraj's avatar
style  
patil-suraj committed
468

patil-suraj's avatar
patil-suraj committed
469
470
471
        xt = z * y_mask
        h = 1.0 / num_inference_steps
        for t in tqdm.tqdm(range(num_inference_steps), total=num_inference_steps):
patil-suraj's avatar
style  
patil-suraj committed
472
            t = (1.0 - (t + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype, device=z.device)
patil-suraj's avatar
patil-suraj committed
473
            time = t.unsqueeze(-1).unsqueeze(-1)
patil-suraj's avatar
style  
patil-suraj committed
474

patil-suraj's avatar
patil-suraj committed
475
            residual = self.unet(xt, t, mu_y, y_mask, speaker_id)
patil-suraj's avatar
style  
patil-suraj committed
476

patil-suraj's avatar
patil-suraj committed
477
478
            xt = self.noise_scheduler.step(xt, residual, mu_y, h, time)
            xt = xt * y_mask
patil-suraj's avatar
style  
patil-suraj committed
479
480

        return xt[:, :, :y_max_length]