loading.mdx 20.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Nathan Lambert's avatar
Nathan Lambert committed
2
3
4
5
6
7
8
9
10
11
12

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

13
# Load pipelines, models, and schedulers
Patrick von Platen's avatar
Patrick von Platen committed
14

15
Having an easy way to use a diffusion system for inference is essential to 🧨 Diffusers. Diffusion systems often consist of multiple components like parameterized models, tokenizers, and schedulers that interact in complex ways. That is why we designed the [`DiffusionPipeline`] to wrap the complexity of the entire diffusion system into an easy-to-use API, while remaining flexible enough to be adapted for other use cases, such as loading each component individually as building blocks to assemble your own diffusion system.
16

17
Everything you need for inference or training is accessible with the `from_pretrained()` method.
18

19
This guide will show you how to load:
20

21
22
23
24
- pipelines from the Hub and locally
- different components into a pipeline
- checkpoint variants such as different floating point types or non-exponential mean averaged (EMA) weights
- models and schedulers
25

26
27
28
29
30
31
32
33
34
## Diffusion Pipeline

<Tip>

💡 Skip to the [DiffusionPipeline explained](#diffusionpipeline-explained) section if you interested in learning in more detail about how the [`DiffusionPipeline`] class works.

</Tip>

The [`DiffusionPipeline`] class is the simplest and most generic way to load any diffusion model from the [Hub](https://huggingface.co/models?library=diffusers). The [`DiffusionPipeline.from_pretrained`] method automatically detects the correct pipeline class from the checkpoint, downloads and caches all the required configuration and weight files, and returns a pipeline instance ready for inference.
35
36
37
38

```python
from diffusers import DiffusionPipeline

39
40
repo_id = "runwayml/stable-diffusion-v1-5"
pipe = DiffusionPipeline.from_pretrained(repo_id)
41
42
```

43
You can also load a checkpoint with it's specific pipeline class. The example above loaded a Stable Diffusion model; to get the same result, use the [`StableDiffusionPipeline`] class:
44
45

```python
46
47
48
49
50
51
from diffusers import StableDiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(repo_id)
```

52
A checkpoint (such as [`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) or [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) may also be used for more than one task, like text-to-image or image-to-image. To differentiate what task you want to use the checkpoint for, you have to load it directly with it's corresponding task-specific pipeline class:
53
54
55
56
57
58

```python
from diffusers import StableDiffusionImg2ImgPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(repo_id)
59
60
```

61
### Local pipeline
62

63
To load a diffusion pipeline locally, use [`git-lfs`](https://git-lfs.github.com/) to manually download the checkpoint (in this case, [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) to your local disk. This creates a local folder, `./stable-diffusion-v1-5`, on your disk:
64

65
66
67
68
```bash
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
69

70
Then pass the local path to [`~DiffusionPipeline.from_pretrained`]:
71
72
73
74

```python
from diffusers import DiffusionPipeline

75
repo_id = "./stable-diffusion-v1-5"
76
77
78
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
```

79
The [`~DiffusionPipeline.from_pretrained`] method won't download any files from the Hub when it detects a local path, but this also means it won't download and cache the latest changes to a checkpoint.
80

81
### Swap components in a pipeline
82

83
You can customize the default components of any pipeline with another compatible component. Customization is important because:
84

85
86
87
- Changing the scheduler is important for exploring the trade-off between generation speed and quality.
- Different components of a model are typically trained independently and you can swap out a component with a better-performing one.
- During finetuning, usually only some components - like the UNet or text encoder - are trained.
88

89
To find out which schedulers are compatible for customization, you can use the `compatibles` method:
90

91
```py
92
93
94
95
from diffusers import DiffusionPipeline

repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
96
stable_diffusion.scheduler.compatibles
97
98
```

99
Let's use the [`SchedulerMixin.from_pretrained`] method to replace the default [`PNDMScheduler`] with a more performant scheduler, [`EulerDiscreteScheduler`]. The `subfolder="scheduler"` argument is required to load the scheduler configuration from the correct [subfolder](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/scheduler) of the pipeline repository.
100

101
Then you can pass the new [`EulerDiscreteScheduler`] instance to the `scheduler` argument in [`DiffusionPipeline`]:
102
103
104
105
106
107

```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler

repo_id = "runwayml/stable-diffusion-v1-5"

108
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
109
110
111
112

stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler)
```

113
### Safety checker
114

115
Diffusion models like Stable Diffusion can generate harmful content, which is why 🧨 Diffusers has a [safety checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) to check generated outputs against known hardcoded NSFW content. If you'd like to disable the safety checker for whatever reason, pass `None` to the `safety_checker` argument:
116
117

```python
118
from diffusers import DiffusionPipeline
119

120
repo_id = "runwayml/stable-diffusion-v1-5"
121
122
123
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None)
```

124
125
### Reuse components across pipelines

Steven Liu's avatar
Steven Liu committed
126
You can also reuse the same components in multiple pipelines to avoid loading the weights into RAM twice. Use the [`~DiffusionPipeline.components`] method to save the components:
127
128
129
130
131
132
133
134

```python
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline

model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id)

components = stable_diffusion_txt2img.components
135
```
136

137
138
139
Then you can pass the `components` to another pipeline without reloading the weights into RAM:

```py
140
141
142
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(**components)
```

Steven Liu's avatar
Steven Liu committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
You can also pass the components individually to the pipeline if you want more flexibility over which components to reuse or disable. For example, to reuse the same components in the text-to-image pipeline, except for the safety checker and feature extractor, in the image-to-image pipeline:

```py
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline

model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id)
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(
    vae=stable_diffusion_txt2img.vae,
    text_encoder=stable_diffusion_txt2img.text_encoder,
    tokenizer=stable_diffusion_txt2img.tokenizer,
    unet=stable_diffusion_txt2img.unet,
    scheduler=stable_diffusion_txt2img.scheduler,
    safety_checker=None,
    feature_extractor=None,
    requires_safety_checker=False,
)
```

162
## Checkpoint variants
163

164
A checkpoint variant is usually a checkpoint where it's weights are:
165

166
167
- Stored in a different floating point type for lower precision and lower storage, such as [`torch.float16`](https://pytorch.org/docs/stable/tensors.html#data-types), because it only requires half the bandwidth and storage to download. You can't use this variant if you're continuing training or using a CPU.
- Non-exponential mean averaged (EMA) weights which shouldn't be used for inference. You should use these to continue finetuning a model.
168

169
<Tip>
170

171
💡 When the checkpoints have identical model structures, but they were trained on different datasets and with a different training setup, they should be stored in separate repositories instead of variations (for example, [`stable-diffusion-v1-4`] and [`stable-diffusion-v1-5`]).
172

173
</Tip>
174

175
Otherwise, a variant is **identical** to the original checkpoint. They have exactly the same serialization format (like [Safetensors](./using-diffusers/using_safetensors)), model structure, and weights have identical tensor shapes.
176

177
178
179
180
181
| **checkpoint type** | **weight name**                     | **argument for loading weights** |
|---------------------|-------------------------------------|----------------------------------|
| original            | diffusion_pytorch_model.bin         |                                  |
| floating point      | diffusion_pytorch_model.fp16.bin    | `variant`, `torch_dtype`         |
| non-EMA             | diffusion_pytorch_model.non_ema.bin | `variant`                        |
182

183
There are two important arguments to know for loading variants:
184

185
- `torch_dtype` defines the floating point precision of the loaded checkpoints. For example, if you want to save bandwidth by loading a `fp16` variant, you should specify `torch_dtype=torch.float16` to *convert the weights* to `fp16`. Otherwise, the `fp16` weights are converted to the default `fp32` precision. You can also load the original checkpoint without defining the `variant` argument, and convert it to `fp16` with `torch_dtype=torch.float16`. In this case, the default `fp32` weights are downloaded first, and then they're converted to `fp16` after loading.
186

187
- `variant` defines which files should be loaded from the repository. For example, if you want to load a `non_ema` variant from the [`diffusers/stable-diffusion-variants`](https://huggingface.co/diffusers/stable-diffusion-variants/tree/main/unet) repository, you should specify `variant="non_ema"` to download the `non_ema` files.
188

189
190
```python
from diffusers import DiffusionPipeline
191

192
193
194
195
196
197
198
# load fp16 variant
stable_diffusion = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16
)
# load non_ema variant
stable_diffusion = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", variant="non_ema")
```
199

200
201
202
To save a checkpoint stored in a different floating point type or as a non-EMA variant, use the [`DiffusionPipeline.save_pretrained`] method and specify the `variant` argument. You should try and save a variant to the same folder as the original checkpoint, so you can load both from the same folder:

```python
203
204
from diffusers import DiffusionPipeline

205
206
207
208
# save as fp16 variant
stable_diffusion.save_pretrained("runwayml/stable-diffusion-v1-5", variant="fp16")
# save as non-ema variant
stable_diffusion.save_pretrained("runwayml/stable-diffusion-v1-5", variant="non_ema")
209
210
```

211
If you don't save the variant to an existing folder, you must specify the `variant` argument otherwise it'll throw an `Exception` because it can't find the original checkpoint:
212

213
214
215
216
217
218
219
```python
# 👎 this won't work
stable_diffusion = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", torch_dtype=torch.float16)
# 👍 this works
stable_diffusion = DiffusionPipeline.from_pretrained(
    "./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16
)
220
221
```

222
223
<!--
TODO(Patrick) - Make sure to uncomment this part as soon as things are deprecated.
224

225
#### Using `revision` to load pipeline variants is deprecated
226

227
228
Previously the `revision` argument of [`DiffusionPipeline.from_pretrained`] was heavily used to 
load model variants, e.g.:
229

230
231
```python
from diffusers import DiffusionPipeline
232

233
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16")
234
235
```

236
However, this behavior is now deprecated since the "revision" argument should (just as it's done in GitHub) better be used to load model checkpoints from a specific commit or branch in development.
237

238
The above example is therefore deprecated and won't be supported anymore for `diffusers >= 1.0.0`.
239

240
<Tip warning={true}>
241

242
243
244
If you load diffusers pipelines or models with `revision="fp16"` or `revision="non_ema"`, 
please make sure to update to code and use `variant="fp16"` or `variation="non_ema"` respectively
instead.
245

246
247
</Tip>
-->
248

249
## Models
250

251
Models are loaded from the [`ModelMixin.from_pretrained`] method, which downloads and caches the latest version of the model weights and configurations. If the latest files are available in the local cache, [`~ModelMixin.from_pretrained`] reuses files in the cache instead of redownloading them.
252

253
Models can be loaded from a subfolder with the `subfolder` argument. For example, the model weights for `runwayml/stable-diffusion-v1-5` are stored in the [`unet`](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/unet) subfolder:
254

255
256
257
258
259
```python
from diffusers import UNet2DConditionModel

repo_id = "runwayml/stable-diffusion-v1-5"
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet")
260
261
```

262
Or directly from a repository's [directory](https://huggingface.co/google/ddpm-cifar10-32/tree/main):
263

264
265
266
267
268
```python
from diffusers import UNet2DModel

repo_id = "google/ddpm-cifar10-32"
model = UNet2DModel.from_pretrained(repo_id)
269
270
```

271
You can also load and save model variants by specifying the `variant` argument in [`ModelMixin.from_pretrained`] and [`ModelMixin.save_pretrained`]:
272

273
274
```python
from diffusers import UNet2DConditionModel
275

276
277
278
model = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", variant="non-ema")
model.save_pretrained("./local-unet", variant="non-ema")
```
279

280
281
282
## Schedulers

Schedulers are loaded from the [`SchedulerMixin.from_pretrained`] method, and unlike models, schedulers are **not parameterized** or **trained**; they are defined by a configuration file.
283

284
285
Loading schedulers does not consume any significant amount of memory and the same configuration file can be used for a variety of different schedulers.
For example, the following schedulers are compatible with [`StableDiffusionPipeline`] which means you can load the same scheduler configuration file in any of these classes:
286
287

```python
288
289
290
291
292
293
294
295
296
297
from diffusers import StableDiffusionPipeline
from diffusers import (
    DDPMScheduler,
    DDIMScheduler,
    PNDMScheduler,
    LMSDiscreteScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
)
298

299
repo_id = "runwayml/stable-diffusion-v1-5"
300

301
302
303
304
305
306
307
ddpm = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
ddim = DDIMScheduler.from_pretrained(repo_id, subfolder="scheduler")
pndm = PNDMScheduler.from_pretrained(repo_id, subfolder="scheduler")
lms = LMSDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
308

309
310
311
# replace `dpm` with any of `ddpm`, `ddim`, `pndm`, `lms`, `euler_anc`, `euler`
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm)
```
312

313
## DiffusionPipeline explained
314
315
316

As a class method, [`DiffusionPipeline.from_pretrained`] is responsible for two things:

317
318
319
320
- Download the latest version of the folder structure required for inference and cache it. If the latest folder structure is available in the local cache, [`DiffusionPipeline.from_pretrained`] reuses the cache and won't redownload the files.
- Load the cached weights into the correct pipeline [class](./api/pipelines/overview#diffusers-summary) - retrieved from the `model_index.json` file - and return an instance of it.

The pipelines underlying folder structure corresponds directly with their class instances. For example, the [`StableDiffusionPipeline`] corresponds to the folder structure in [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5).
321
322
323
324

```python
from diffusers import DiffusionPipeline

325
repo_id = "runwayml/stable-diffusion-v1-5"
326
327
pipeline = DiffusionPipeline.from_pretrained(repo_id)
print(pipeline)
328
329
```

330
331
332
333
334
335
336
337
338
339
340
You'll see pipeline is an instance of [`StableDiffusionPipeline`], which consists of seven components:

- `"feature_extractor"`: a [`~transformers.CLIPFeatureExtractor`] from 🤗 Transformers.
- `"safety_checker"`: a [component](https://github.com/huggingface/diffusers/blob/e55687e1e15407f60f32242027b7bb8170e58266/src/diffusers/pipelines/stable_diffusion/safety_checker.py#L32) for screening against harmful content.
- `"scheduler"`: an instance of [`PNDMScheduler`].
- `"text_encoder"`: a [`~transformers.CLIPTextModel`] from 🤗 Transformers.
- `"tokenizer"`: a [`~transformers.CLIPTokenizer`] from 🤗 Transformers.
- `"unet"`: an instance of [`UNet2DConditionModel`].
- `"vae"` an instance of [`AutoencoderKL`].

```json
341
342
343
StableDiffusionPipeline {
  "feature_extractor": [
    "transformers",
344
    "CLIPImageProcessor"
345
346
347
348
  ],
  "safety_checker": [
    "stable_diffusion",
    "StableDiffusionSafetyChecker"
349
350
351
  ],
  "scheduler": [
    "diffusers",
352
353
354
355
356
    "PNDMScheduler"
  ],
  "text_encoder": [
    "transformers",
    "CLIPTextModel"
357
358
359
  ],
  "tokenizer": [
    "transformers",
360
    "CLIPTokenizer"
361
362
363
364
365
  ],
  "unet": [
    "diffusers",
    "UNet2DConditionModel"
  ],
366
  "vae": [
367
368
369
370
371
372
    "diffusers",
    "AutoencoderKL"
  ]
}
```

373
Compare the components of the pipeline instance to the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) folder structure, and you'll see there is a separate folder for each of the components in the repository:
374
375
376

```
.
377
378
379
380
├── feature_extractor
│   └── preprocessor_config.json
├── model_index.json
├── safety_checker
381
382
383
384
│   ├── config.json
│   └── pytorch_model.bin
├── scheduler
│   └── scheduler_config.json
385
386
387
├── text_encoder
│   ├── config.json
│   └── pytorch_model.bin
388
├── tokenizer
389
│   ├── merges.txt
390
391
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
392
│   └── vocab.json
393
394
├── unet
│   ├── config.json
395
396
│   ├── diffusion_pytorch_model.bin
└── vae
397
    ├── config.json
398
    ├── diffusion_pytorch_model.bin
399
400
```

401
You can access each of the components of the pipeline as an attribute to view its configuration:
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
```py
pipeline.tokenizer
CLIPTokenizer(
    name_or_path="/root/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/39593d5650112b4cc580433f6b0435385882d819/tokenizer",
    vocab_size=49408,
    model_max_length=77,
    is_fast=False,
    padding_side="right",
    truncation_side="right",
    special_tokens={
        "bos_token": AddedToken("<|startoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "eos_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "unk_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
        "pad_token": "<|endoftext|>",
    },
)
419
```
420
421
422
423
424
425
426
427

Every pipeline expects a `model_index.json` file that tells the [`DiffusionPipeline`]:

- which pipeline class to load from `_class_name`
- which version of 🧨 Diffusers was used to create the model in `_diffusers_version`
- what components from which library are stored in the subfolders (`name` corresponds to the component and subfolder name, `library` corresponds to the name of the library to load the class from, and `class` corresponds to the class name)

```json
428
{
429
430
431
432
  "_class_name": "StableDiffusionPipeline",
  "_diffusers_version": "0.6.0",
  "feature_extractor": [
    "transformers",
433
    "CLIPImageProcessor"
434
435
436
437
  ],
  "safety_checker": [
    "stable_diffusion",
    "StableDiffusionSafetyChecker"
438
439
440
  ],
  "scheduler": [
    "diffusers",
441
442
443
444
445
    "PNDMScheduler"
  ],
  "text_encoder": [
    "transformers",
    "CLIPTextModel"
446
447
448
  ],
  "tokenizer": [
    "transformers",
449
    "CLIPTokenizer"
450
451
452
453
454
  ],
  "unet": [
    "diffusers",
    "UNet2DConditionModel"
  ],
455
  "vae": [
456
457
458
459
    "diffusers",
    "AutoencoderKL"
  ]
}
460
```