training_ddpm.py 3.96 KB
Newer Older
anton-l's avatar
anton-l committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import random

import numpy as np
import torch
import torch.nn.functional as F

import PIL.Image
from accelerate import Accelerator
from datasets import load_dataset
from diffusers import DDPM, DDPMScheduler, UNetModel
from torchvision.transforms import CenterCrop, Compose, Lambda, RandomHorizontalFlip, Resize, ToTensor
from tqdm.auto import tqdm
from transformers import get_linear_schedule_with_warmup


def set_seed(seed):
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)


set_seed(0)

anton-l's avatar
anton-l committed
27
28
29
30
31
32
33
34
35
36
37
accelerator = Accelerator()

model = UNetModel(
    attn_resolutions=(16,),
    ch=128,
    ch_mult=(1, 2, 2, 2),
    dropout=0.1,
    num_res_blocks=2,
    resamp_with_conv=True,
    resolution=32
)
anton-l's avatar
anton-l committed
38
noise_scheduler = DDPMScheduler(timesteps=1000)
anton-l's avatar
anton-l committed
39
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)
anton-l's avatar
anton-l committed
40
41

num_epochs = 100
anton-l's avatar
anton-l committed
42
43
batch_size = 64
gradient_accumulation_steps = 2
anton-l's avatar
anton-l committed
44
45
46

augmentations = Compose(
    [
anton-l's avatar
anton-l committed
47
48
        Resize(32),
        CenterCrop(32),
anton-l's avatar
anton-l committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        RandomHorizontalFlip(),
        ToTensor(),
        Lambda(lambda x: x * 2 - 1),
    ]
)
dataset = load_dataset("huggan/pokemon", split="train")


def transforms(examples):
    images = [augmentations(image.convert("RGB")) for image in examples["image"]]
    return {"input": images}


dataset = dataset.shuffle(seed=0)
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)

anton-l's avatar
anton-l committed
66
67
68
69
70
#lr_scheduler = get_linear_schedule_with_warmup(
#    optimizer=optimizer,
#    num_warmup_steps=1000,
#    num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps,
#)
anton-l's avatar
anton-l committed
71

anton-l's avatar
anton-l committed
72
73
model, optimizer, train_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader
anton-l's avatar
anton-l committed
74
75
76
77
78
79
80
81
82
)

for epoch in range(num_epochs):
    model.train()
    pbar = tqdm(total=len(train_dataloader), unit="ba")
    pbar.set_description(f"Epoch {epoch}")
    for step, batch in enumerate(train_dataloader):
        clean_images = batch["input"]
        noisy_images = torch.empty_like(clean_images)
anton-l's avatar
anton-l committed
83
        noise_samples = torch.empty_like(clean_images)
anton-l's avatar
anton-l committed
84
85
86
87
        bsz = clean_images.shape[0]

        timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long()
        for idx in range(bsz):
anton-l's avatar
anton-l committed
88
89
            noise = torch.randn((3, 32, 32)).to(clean_images.device)
            noise_samples[idx] = noise
anton-l's avatar
anton-l committed
90
91
92
93
94
            noisy_images[idx] = noise_scheduler.forward_step(clean_images[idx], noise, timesteps[idx])

        if step % gradient_accumulation_steps == 0:
            with accelerator.no_sync(model):
                output = model(noisy_images, timesteps)
anton-l's avatar
anton-l committed
95
96
                # predict the noise
                loss = F.l1_loss(output, noise_samples)
anton-l's avatar
anton-l committed
97
98
99
100
101
                accelerator.backward(loss)
        else:
            output = model(noisy_images, timesteps)
            loss = F.l1_loss(output, clean_images)
            accelerator.backward(loss)
anton-l's avatar
anton-l committed
102
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
anton-l's avatar
anton-l committed
103
            optimizer.step()
anton-l's avatar
anton-l committed
104
            # lr_scheduler.step()
anton-l's avatar
anton-l committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
            optimizer.zero_grad()
        pbar.update(1)
        pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])

        optimizer.step()

    # eval
    model.eval()
    with torch.no_grad():
        pipeline = DDPM(unet=model, noise_scheduler=noise_scheduler)
        generator = torch.Generator()
        generator = generator.manual_seed(0)
        # run pipeline in inference (sample random noise and denoise)
        image = pipeline(generator=generator)

        # process image to PIL
        image_processed = image.cpu().permute(0, 2, 3, 1)
        image_processed = (image_processed + 1.0) * 127.5
        image_processed = image_processed.type(torch.uint8).numpy()
        image_pil = PIL.Image.fromarray(image_processed[0])

        # save image
        pipeline.save_pretrained("./poke-ddpm")
        image_pil.save(f"./poke-ddpm/test_{epoch}.png")