modular_blocks.py 33.8 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
    QwenImageControlNetBeforeDenoiserStep,
    QwenImageCreateMaskLatentsStep,
    QwenImageEditRoPEInputsStep,
    QwenImagePrepareLatentsStep,
    QwenImagePrepareLatentsWithStrengthStep,
    QwenImageRoPEInputsStep,
    QwenImageSetTimestepsStep,
    QwenImageSetTimestepsWithStrengthStep,
)
from .decoders import QwenImageDecoderStep, QwenImageInpaintProcessImagesOutputStep, QwenImageProcessImagesOutputStep
from .denoise import (
    QwenImageControlNetDenoiseStep,
    QwenImageDenoiseStep,
    QwenImageEditDenoiseStep,
    QwenImageEditInpaintDenoiseStep,
    QwenImageInpaintControlNetDenoiseStep,
    QwenImageInpaintDenoiseStep,
    QwenImageLoopBeforeDenoiserControlNet,
)
from .encoders import (
    QwenImageControlNetVaeEncoderStep,
    QwenImageEditResizeDynamicStep,
    QwenImageEditTextEncoderStep,
    QwenImageInpaintProcessImagesInputStep,
    QwenImageProcessImagesInputStep,
    QwenImageTextEncoderStep,
    QwenImageVaeEncoderDynamicStep,
)
from .inputs import QwenImageControlNetInputsStep, QwenImageInputsDynamicStep, QwenImageTextInputsStep


logger = logging.get_logger(__name__)

# 1. QwenImage

## 1.1 QwenImage/text2image

#### QwenImage/decode
#### (standard decode step works for most tasks except for inpaint)
QwenImageDecodeBlocks = InsertableDict(
    [
        ("decode", QwenImageDecoderStep()),
        ("postprocess", QwenImageProcessImagesOutputStep()),
    ]
)


class QwenImageDecodeStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageDecodeBlocks.values()
    block_names = QwenImageDecodeBlocks.keys()

    @property
    def description(self):
        return "Decode step that decodes the latents to images and postprocess the generated image."


#### QwenImage/text2image presets
TEXT2IMAGE_BLOCKS = InsertableDict(
    [
        ("text_encoder", QwenImageTextEncoderStep()),
        ("input", QwenImageTextInputsStep()),
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsStep()),
        ("prepare_rope_inputs", QwenImageRoPEInputsStep()),
        ("denoise", QwenImageDenoiseStep()),
        ("decode", QwenImageDecodeStep()),
    ]
)


## 1.2 QwenImage/inpaint

#### QwenImage/inpaint vae encoder
QwenImageInpaintVaeEncoderBlocks = InsertableDict(
    [
        (
            "preprocess",
            QwenImageInpaintProcessImagesInputStep,
        ),  # image, mask_image -> processed_image, processed_mask_image, mask_overlay_kwargs
        ("encode", QwenImageVaeEncoderDynamicStep()),  # processed_image -> image_latents
    ]
)


class QwenImageInpaintVaeEncoderStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageInpaintVaeEncoderBlocks.values()
    block_names = QwenImageInpaintVaeEncoderBlocks.keys()

    @property
    def description(self) -> str:
        return (
            "This step is used for processing image and mask inputs for inpainting tasks. It:\n"
            " - Resizes the image to the target size, based on `height` and `width`.\n"
            " - Processes and updates `image` and `mask_image`.\n"
            " - Creates `image_latents`."
        )


#### QwenImage/inpaint inputs
QwenImageInpaintInputBlocks = InsertableDict(
    [
        ("text_inputs", QwenImageTextInputsStep()),  # default step to process text embeddings
        (
            "additional_inputs",
            QwenImageInputsDynamicStep(
                image_latent_inputs=["image_latents"], additional_batch_inputs=["processed_mask_image"]
            ),
        ),
    ]
)


class QwenImageInpaintInputStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageInpaintInputBlocks.values()
    block_names = QwenImageInpaintInputBlocks.keys()

    @property
    def description(self):
        return "Input step that prepares the inputs for the inpainting denoising step. It:\n"
        " - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents` and `processed_mask_image`).\n"
        " - update height/width based `image_latents`, patchify `image_latents`."


# QwenImage/inpaint prepare latents
QwenImageInpaintPrepareLatentsBlocks = InsertableDict(
    [
        ("add_noise_to_latents", QwenImagePrepareLatentsWithStrengthStep()),
        ("create_mask_latents", QwenImageCreateMaskLatentsStep()),
    ]
)


class QwenImageInpaintPrepareLatentsStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageInpaintPrepareLatentsBlocks.values()
    block_names = QwenImageInpaintPrepareLatentsBlocks.keys()

    @property
    def description(self) -> str:
        return (
            "This step prepares the latents/image_latents and mask inputs for the inpainting denoising step. It:\n"
            " - Add noise to the image latents to create the latents input for the denoiser.\n"
            " - Create the pachified latents `mask` based on the processedmask image.\n"
        )


#### QwenImage/inpaint decode
QwenImageInpaintDecodeBlocks = InsertableDict(
    [
        ("decode", QwenImageDecoderStep()),
        ("postprocess", QwenImageInpaintProcessImagesOutputStep()),
    ]
)


class QwenImageInpaintDecodeStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageInpaintDecodeBlocks.values()
    block_names = QwenImageInpaintDecodeBlocks.keys()

    @property
    def description(self):
        return "Decode step that decodes the latents to images and postprocess the generated image, optional apply the mask overally to the original image."


#### QwenImage/inpaint presets
INPAINT_BLOCKS = InsertableDict(
    [
        ("text_encoder", QwenImageTextEncoderStep()),
        ("vae_encoder", QwenImageInpaintVaeEncoderStep()),
        ("input", QwenImageInpaintInputStep()),
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsWithStrengthStep()),
        ("prepare_inpaint_latents", QwenImageInpaintPrepareLatentsStep()),
        ("prepare_rope_inputs", QwenImageRoPEInputsStep()),
        ("denoise", QwenImageInpaintDenoiseStep()),
        ("decode", QwenImageInpaintDecodeStep()),
    ]
)


## 1.3 QwenImage/img2img

#### QwenImage/img2img vae encoder
QwenImageImg2ImgVaeEncoderBlocks = InsertableDict(
    [
        ("preprocess", QwenImageProcessImagesInputStep()),
        ("encode", QwenImageVaeEncoderDynamicStep()),
    ]
)


class QwenImageImg2ImgVaeEncoderStep(SequentialPipelineBlocks):
    model_name = "qwenimage"

    block_classes = QwenImageImg2ImgVaeEncoderBlocks.values()
    block_names = QwenImageImg2ImgVaeEncoderBlocks.keys()

    @property
    def description(self) -> str:
        return "Vae encoder step that preprocess andencode the image inputs into their latent representations."


#### QwenImage/img2img inputs
QwenImageImg2ImgInputBlocks = InsertableDict(
    [
        ("text_inputs", QwenImageTextInputsStep()),  # default step to process text embeddings
        ("additional_inputs", QwenImageInputsDynamicStep(image_latent_inputs=["image_latents"])),
    ]
)


class QwenImageImg2ImgInputStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageImg2ImgInputBlocks.values()
    block_names = QwenImageImg2ImgInputBlocks.keys()

    @property
    def description(self):
        return "Input step that prepares the inputs for the img2img denoising step. It:\n"
        " - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents`).\n"
        " - update height/width based `image_latents`, patchify `image_latents`."


#### QwenImage/img2img presets
IMAGE2IMAGE_BLOCKS = InsertableDict(
    [
        ("text_encoder", QwenImageTextEncoderStep()),
        ("vae_encoder", QwenImageImg2ImgVaeEncoderStep()),
        ("input", QwenImageImg2ImgInputStep()),
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsWithStrengthStep()),
        ("prepare_img2img_latents", QwenImagePrepareLatentsWithStrengthStep()),
        ("prepare_rope_inputs", QwenImageRoPEInputsStep()),
        ("denoise", QwenImageDenoiseStep()),
        ("decode", QwenImageDecodeStep()),
    ]
)


## 1.4 QwenImage/controlnet

#### QwenImage/controlnet presets
CONTROLNET_BLOCKS = InsertableDict(
    [
        ("controlnet_vae_encoder", QwenImageControlNetVaeEncoderStep()),  # vae encoder step for control_image
        ("controlnet_inputs", QwenImageControlNetInputsStep()),  # additional input step for controlnet
        (
            "controlnet_before_denoise",
            QwenImageControlNetBeforeDenoiserStep(),
        ),  # before denoise step (after set_timesteps step)
        (
            "controlnet_denoise_loop_before",
            QwenImageLoopBeforeDenoiserControlNet(),
        ),  # controlnet loop step (insert before the denoiseloop_denoiser)
    ]
)


## 1.5 QwenImage/auto encoders


#### for inpaint and img2img tasks
class QwenImageAutoVaeEncoderStep(AutoPipelineBlocks):
    block_classes = [QwenImageInpaintVaeEncoderStep, QwenImageImg2ImgVaeEncoderStep]
    block_names = ["inpaint", "img2img"]
    block_trigger_inputs = ["mask_image", "image"]

    @property
    def description(self):
        return (
            "Vae encoder step that encode the image inputs into their latent representations.\n"
            + "This is an auto pipeline block.\n"
            + " - `QwenImageInpaintVaeEncoderStep` (inpaint) is used when `mask_image` is provided.\n"
            + " - `QwenImageImg2ImgVaeEncoderStep` (img2img) is used when `image` is provided.\n"
            + " - if `mask_image` or `image` is not provided, step will be skipped."
        )


# for controlnet tasks
class QwenImageOptionalControlNetVaeEncoderStep(AutoPipelineBlocks):
    block_classes = [QwenImageControlNetVaeEncoderStep]
    block_names = ["controlnet"]
    block_trigger_inputs = ["control_image"]

    @property
    def description(self):
        return (
            "Vae encoder step that encode the image inputs into their latent representations.\n"
            + "This is an auto pipeline block.\n"
            + " - `QwenImageControlNetVaeEncoderStep` (controlnet) is used when `control_image` is provided.\n"
            + " - if `control_image` is not provided, step will be skipped."
        )


## 1.6 QwenImage/auto inputs


# text2image/inpaint/img2img
class QwenImageAutoInputStep(AutoPipelineBlocks):
    block_classes = [QwenImageInpaintInputStep, QwenImageImg2ImgInputStep, QwenImageTextInputsStep]
    block_names = ["inpaint", "img2img", "text2image"]
    block_trigger_inputs = ["processed_mask_image", "image_latents", None]

    @property
    def description(self):
        return (
            "Input step that standardize the inputs for the denoising step, e.g. make sure inputs have consistent batch size, and patchified. \n"
            " This is an auto pipeline block that works for text2image/inpaint/img2img tasks.\n"
            + " - `QwenImageInpaintInputStep` (inpaint) is used when `processed_mask_image` is provided.\n"
            + " - `QwenImageImg2ImgInputStep` (img2img) is used when `image_latents` is provided.\n"
            + " - `QwenImageTextInputsStep` (text2image) is used when both `processed_mask_image` and `image_latents` are not provided.\n"
        )


# controlnet
class QwenImageOptionalControlNetInputStep(AutoPipelineBlocks):
    block_classes = [QwenImageControlNetInputsStep]
    block_names = ["controlnet"]
    block_trigger_inputs = ["control_image_latents"]

    @property
    def description(self):
        return (
            "Controlnet input step that prepare the control_image_latents input.\n"
            + "This is an auto pipeline block.\n"
            + " - `QwenImageControlNetInputsStep` (controlnet) is used when `control_image_latents` is provided.\n"
            + " - if `control_image_latents` is not provided, step will be skipped."
        )


## 1.7 QwenImage/auto before denoise step
# compose the steps into a BeforeDenoiseStep for text2image/img2img/inpaint tasks before combine into an auto step

#  QwenImage/text2image before denoise
QwenImageText2ImageBeforeDenoiseBlocks = InsertableDict(
    [
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsStep()),
        ("prepare_rope_inputs", QwenImageRoPEInputsStep()),
    ]
)


class QwenImageText2ImageBeforeDenoiseStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageText2ImageBeforeDenoiseBlocks.values()
    block_names = QwenImageText2ImageBeforeDenoiseBlocks.keys()

    @property
    def description(self):
        return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for text2image task."


# QwenImage/inpaint before denoise
QwenImageInpaintBeforeDenoiseBlocks = InsertableDict(
    [
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsWithStrengthStep()),
        ("prepare_inpaint_latents", QwenImageInpaintPrepareLatentsStep()),
        ("prepare_rope_inputs", QwenImageRoPEInputsStep()),
    ]
)


class QwenImageInpaintBeforeDenoiseStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageInpaintBeforeDenoiseBlocks.values()
    block_names = QwenImageInpaintBeforeDenoiseBlocks.keys()

    @property
    def description(self):
        return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for inpaint task."


# QwenImage/img2img before denoise
QwenImageImg2ImgBeforeDenoiseBlocks = InsertableDict(
    [
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsWithStrengthStep()),
        ("prepare_img2img_latents", QwenImagePrepareLatentsWithStrengthStep()),
        ("prepare_rope_inputs", QwenImageRoPEInputsStep()),
    ]
)


class QwenImageImg2ImgBeforeDenoiseStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageImg2ImgBeforeDenoiseBlocks.values()
    block_names = QwenImageImg2ImgBeforeDenoiseBlocks.keys()

    @property
    def description(self):
        return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for img2img task."


# auto before_denoise step for text2image, inpaint, img2img tasks
class QwenImageAutoBeforeDenoiseStep(AutoPipelineBlocks):
    block_classes = [
        QwenImageInpaintBeforeDenoiseStep,
        QwenImageImg2ImgBeforeDenoiseStep,
        QwenImageText2ImageBeforeDenoiseStep,
    ]
    block_names = ["inpaint", "img2img", "text2image"]
    block_trigger_inputs = ["processed_mask_image", "image_latents", None]

    @property
    def description(self):
        return (
            "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step.\n"
            + "This is an auto pipeline block that works for text2img, inpainting, img2img tasks.\n"
            + " - `QwenImageInpaintBeforeDenoiseStep` (inpaint) is used when `processed_mask_image` is provided.\n"
            + " - `QwenImageImg2ImgBeforeDenoiseStep` (img2img) is used when `image_latents` is provided.\n"
            + " - `QwenImageText2ImageBeforeDenoiseStep` (text2image) is used when both `processed_mask_image` and `image_latents` are not provided.\n"
        )


# auto before_denoise step for controlnet tasks
class QwenImageOptionalControlNetBeforeDenoiseStep(AutoPipelineBlocks):
    block_classes = [QwenImageControlNetBeforeDenoiserStep]
    block_names = ["controlnet"]
    block_trigger_inputs = ["control_image_latents"]

    @property
    def description(self):
        return (
            "Controlnet before denoise step that prepare the controlnet input.\n"
            + "This is an auto pipeline block.\n"
            + " - `QwenImageControlNetBeforeDenoiserStep` (controlnet) is used when `control_image_latents` is provided.\n"
            + " - if `control_image_latents` is not provided, step will be skipped."
        )


## 1.8 QwenImage/auto denoise


# auto denoise step for controlnet tasks: works for all tasks with controlnet
class QwenImageControlNetAutoDenoiseStep(AutoPipelineBlocks):
    block_classes = [QwenImageInpaintControlNetDenoiseStep, QwenImageControlNetDenoiseStep]
    block_names = ["inpaint_denoise", "denoise"]
    block_trigger_inputs = ["mask", None]

    @property
    def description(self):
        return (
            "Controlnet step during the denoising process. \n"
            " This is an auto pipeline block that works for inpaint and text2image/img2img tasks with controlnet.\n"
            + " - `QwenImageInpaintControlNetDenoiseStep` (inpaint) is used when `mask` is provided.\n"
            + " - `QwenImageControlNetDenoiseStep` (text2image/img2img) is used when `mask` is not provided.\n"
        )


# auto denoise step for everything: works for all tasks with or without controlnet
class QwenImageAutoDenoiseStep(AutoPipelineBlocks):
    block_classes = [
        QwenImageControlNetAutoDenoiseStep,
        QwenImageInpaintDenoiseStep,
        QwenImageDenoiseStep,
    ]
    block_names = ["controlnet_denoise", "inpaint_denoise", "denoise"]
    block_trigger_inputs = ["control_image_latents", "mask", None]

    @property
    def description(self):
        return (
            "Denoise step that iteratively denoise the latents. \n"
            " This is an auto pipeline block that works for inpaint/text2image/img2img tasks. It also works with controlnet\n"
            + " - `QwenImageControlNetAutoDenoiseStep` (controlnet) is used when `control_image_latents` is provided.\n"
            + " - `QwenImageInpaintDenoiseStep` (inpaint) is used when `mask` is provided and `control_image_latents` is not provided.\n"
            + " - `QwenImageDenoiseStep` (text2image/img2img) is used when `mask` is not provided and `control_image_latents` is not provided.\n"
        )


## 1.9 QwenImage/auto decode
# auto decode step for inpaint and text2image tasks


class QwenImageAutoDecodeStep(AutoPipelineBlocks):
    block_classes = [QwenImageInpaintDecodeStep, QwenImageDecodeStep]
    block_names = ["inpaint_decode", "decode"]
    block_trigger_inputs = ["mask", None]

    @property
    def description(self):
        return (
            "Decode step that decode the latents into images. \n"
            " This is an auto pipeline block that works for inpaint/text2image/img2img tasks, for both QwenImage and QwenImage-Edit.\n"
            + " - `QwenImageInpaintDecodeStep` (inpaint) is used when `mask` is provided.\n"
            + " - `QwenImageDecodeStep` (text2image/img2img) is used when `mask` is not provided.\n"
        )


YiYi Xu's avatar
YiYi Xu committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
class QwenImageCoreDenoiseStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = [
        QwenImageAutoInputStep,
        QwenImageOptionalControlNetInputStep,
        QwenImageAutoBeforeDenoiseStep,
        QwenImageOptionalControlNetBeforeDenoiseStep,
        QwenImageAutoDenoiseStep,
    ]
    block_names = ["input", "controlnet_input", "before_denoise", "controlnet_before_denoise", "denoise", "decode"]

    @property
    def description(self):
        return (
            "Core step that performs the denoising process. \n"
            + " - `QwenImageAutoInputStep` (input) standardizes the inputs for the denoising step.\n"
            + " - `QwenImageOptionalControlNetInputStep` (controlnet_input) prepares the controlnet input.\n"
            + " - `QwenImageAutoBeforeDenoiseStep` (before_denoise) prepares the inputs for the denoising step.\n"
            + " - `QwenImageOptionalControlNetBeforeDenoiseStep` (controlnet_before_denoise) prepares the controlnet input for the denoising step.\n"
            + " - `QwenImageAutoDenoiseStep` (denoise) iteratively denoises the latents.\n"
            + " - `QwenImageAutoDecodeStep` (decode) decodes the latents into images.\n\n"
            + "This step support text-to-image, image-to-image, inpainting, and controlnet tasks for QwenImage:\n"
            + " - for image-to-image generation, you need to provide `image_latents`\n"
            + " - for inpainting, you need to provide `processed_mask_image` and `image_latents`\n"
            + " - to run the controlnet workflow, you need to provide `control_image_latents`\n"
            + " - for text-to-image generation, all you need to provide is prompt embeddings"
        )


YiYi Xu's avatar
YiYi Xu committed
543
544
545
546
547
548
## 1.10 QwenImage/auto block & presets
AUTO_BLOCKS = InsertableDict(
    [
        ("text_encoder", QwenImageTextEncoderStep()),
        ("vae_encoder", QwenImageAutoVaeEncoderStep()),
        ("controlnet_vae_encoder", QwenImageOptionalControlNetVaeEncoderStep()),
YiYi Xu's avatar
YiYi Xu committed
549
        ("denoise", QwenImageCoreDenoiseStep()),
YiYi Xu's avatar
YiYi Xu committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        ("decode", QwenImageAutoDecodeStep()),
    ]
)


class QwenImageAutoBlocks(SequentialPipelineBlocks):
    model_name = "qwenimage"

    block_classes = AUTO_BLOCKS.values()
    block_names = AUTO_BLOCKS.keys()

    @property
    def description(self):
        return (
            "Auto Modular pipeline for text-to-image, image-to-image, inpainting, and controlnet tasks using QwenImage.\n"
            + "- for image-to-image generation, you need to provide `image`\n"
            + "- for inpainting, you need to provide `mask_image` and `image`, optionally you can provide `padding_mask_crop` \n"
            + "- to run the controlnet workflow, you need to provide `control_image`\n"
            + "- for text-to-image generation, all you need to provide is `prompt`"
        )


# 2. QwenImage-Edit

## 2.1 QwenImage-Edit/edit

#### QwenImage-Edit/edit vl encoder: take both image and text prompts
QwenImageEditVLEncoderBlocks = InsertableDict(
    [
        ("resize", QwenImageEditResizeDynamicStep()),
        ("encode", QwenImageEditTextEncoderStep()),
    ]
)


class QwenImageEditVLEncoderStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageEditVLEncoderBlocks.values()
    block_names = QwenImageEditVLEncoderBlocks.keys()

    @property
    def description(self) -> str:
        return "QwenImage-Edit VL encoder step that encode the image an text prompts together."


#### QwenImage-Edit/edit vae encoder
QwenImageEditVaeEncoderBlocks = InsertableDict(
    [
        ("resize", QwenImageEditResizeDynamicStep()),  # edit has a different resize step
        ("preprocess", QwenImageProcessImagesInputStep()),  # resized_image -> processed_image
        ("encode", QwenImageVaeEncoderDynamicStep()),  # processed_image -> image_latents
    ]
)


class QwenImageEditVaeEncoderStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageEditVaeEncoderBlocks.values()
    block_names = QwenImageEditVaeEncoderBlocks.keys()

    @property
    def description(self) -> str:
        return "Vae encoder step that encode the image inputs into their latent representations."


#### QwenImage-Edit/edit input
QwenImageEditInputBlocks = InsertableDict(
    [
        ("text_inputs", QwenImageTextInputsStep()),  # default step to process text embeddings
        ("additional_inputs", QwenImageInputsDynamicStep(image_latent_inputs=["image_latents"])),
    ]
)


class QwenImageEditInputStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageEditInputBlocks.values()
    block_names = QwenImageEditInputBlocks.keys()

    @property
    def description(self):
        return "Input step that prepares the inputs for the edit denoising step. It:\n"
        " - make sure the text embeddings have consistent batch size as well as the additional inputs: \n"
        " - `image_latents`.\n"
        " - update height/width based `image_latents`, patchify `image_latents`."


#### QwenImage/edit presets
EDIT_BLOCKS = InsertableDict(
    [
        ("text_encoder", QwenImageEditVLEncoderStep()),
        ("vae_encoder", QwenImageEditVaeEncoderStep()),
        ("input", QwenImageEditInputStep()),
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsStep()),
        ("prepare_rope_inputs", QwenImageEditRoPEInputsStep()),
        ("denoise", QwenImageEditDenoiseStep()),
        ("decode", QwenImageDecodeStep()),
    ]
)


## 2.2 QwenImage-Edit/edit inpaint

#### QwenImage-Edit/edit inpaint vae encoder: the difference from regular inpaint is the resize step
QwenImageEditInpaintVaeEncoderBlocks = InsertableDict(
    [
        ("resize", QwenImageEditResizeDynamicStep()),  # image -> resized_image
        (
            "preprocess",
            QwenImageInpaintProcessImagesInputStep,
        ),  # resized_image, mask_image -> processed_image, processed_mask_image, mask_overlay_kwargs
        (
            "encode",
            QwenImageVaeEncoderDynamicStep(input_name="processed_image", output_name="image_latents"),
        ),  # processed_image -> image_latents
    ]
)


class QwenImageEditInpaintVaeEncoderStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageEditInpaintVaeEncoderBlocks.values()
    block_names = QwenImageEditInpaintVaeEncoderBlocks.keys()

    @property
    def description(self) -> str:
        return (
            "This step is used for processing image and mask inputs for QwenImage-Edit inpaint tasks. It:\n"
            " - resize the image for target area (1024 * 1024) while maintaining the aspect ratio.\n"
            " - process the resized image and mask image.\n"
            " - create image latents."
        )


#### QwenImage-Edit/edit inpaint presets
EDIT_INPAINT_BLOCKS = InsertableDict(
    [
        ("text_encoder", QwenImageEditVLEncoderStep()),
        ("vae_encoder", QwenImageEditInpaintVaeEncoderStep()),
        ("input", QwenImageInpaintInputStep()),
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsWithStrengthStep()),
        ("prepare_inpaint_latents", QwenImageInpaintPrepareLatentsStep()),
        ("prepare_rope_inputs", QwenImageEditRoPEInputsStep()),
        ("denoise", QwenImageEditInpaintDenoiseStep()),
        ("decode", QwenImageInpaintDecodeStep()),
    ]
)


## 2.3 QwenImage-Edit/auto encoders


class QwenImageEditAutoVaeEncoderStep(AutoPipelineBlocks):
    block_classes = [
        QwenImageEditInpaintVaeEncoderStep,
        QwenImageEditVaeEncoderStep,
    ]
    block_names = ["edit_inpaint", "edit"]
    block_trigger_inputs = ["mask_image", "image"]

    @property
    def description(self):
        return (
            "Vae encoder step that encode the image inputs into their latent representations. \n"
            " This is an auto pipeline block that works for edit and edit_inpaint tasks.\n"
            + " - `QwenImageEditInpaintVaeEncoderStep` (edit_inpaint) is used when `mask_image` is provided.\n"
            + " - `QwenImageEditVaeEncoderStep` (edit) is used when `image` is provided.\n"
            + " - if `mask_image` or `image` is not provided, step will be skipped."
        )


## 2.4 QwenImage-Edit/auto inputs
class QwenImageEditAutoInputStep(AutoPipelineBlocks):
    block_classes = [QwenImageInpaintInputStep, QwenImageEditInputStep]
    block_names = ["edit_inpaint", "edit"]
YiYi Xu's avatar
YiYi Xu committed
727
    block_trigger_inputs = ["processed_mask_image", "image_latents"]
YiYi Xu's avatar
YiYi Xu committed
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

    @property
    def description(self):
        return (
            "Input step that prepares the inputs for the edit denoising step.\n"
            + " It is an auto pipeline block that works for edit and edit_inpaint tasks.\n"
            + " - `QwenImageInpaintInputStep` (edit_inpaint) is used when `processed_mask_image` is provided.\n"
            + " - `QwenImageEditInputStep` (edit) is used when `image_latents` is provided.\n"
            + " - if `processed_mask_image` or `image_latents` is not provided, step will be skipped."
        )


## 2.5 QwenImage-Edit/auto before denoise
# compose the steps into a BeforeDenoiseStep for edit and edit_inpaint tasks before combine into an auto step

#### QwenImage-Edit/edit before denoise
QwenImageEditBeforeDenoiseBlocks = InsertableDict(
    [
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsStep()),
        ("prepare_rope_inputs", QwenImageEditRoPEInputsStep()),
    ]
)


class QwenImageEditBeforeDenoiseStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageEditBeforeDenoiseBlocks.values()
    block_names = QwenImageEditBeforeDenoiseBlocks.keys()

    @property
    def description(self):
        return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for edit task."


#### QwenImage-Edit/edit inpaint before denoise
QwenImageEditInpaintBeforeDenoiseBlocks = InsertableDict(
    [
        ("prepare_latents", QwenImagePrepareLatentsStep()),
        ("set_timesteps", QwenImageSetTimestepsWithStrengthStep()),
        ("prepare_inpaint_latents", QwenImageInpaintPrepareLatentsStep()),
        ("prepare_rope_inputs", QwenImageEditRoPEInputsStep()),
    ]
)


class QwenImageEditInpaintBeforeDenoiseStep(SequentialPipelineBlocks):
    model_name = "qwenimage"
    block_classes = QwenImageEditInpaintBeforeDenoiseBlocks.values()
    block_names = QwenImageEditInpaintBeforeDenoiseBlocks.keys()

    @property
    def description(self):
        return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for edit inpaint task."


# auto before_denoise step for edit and edit_inpaint tasks
class QwenImageEditAutoBeforeDenoiseStep(AutoPipelineBlocks):
    model_name = "qwenimage-edit"
    block_classes = [
        QwenImageEditInpaintBeforeDenoiseStep,
        QwenImageEditBeforeDenoiseStep,
    ]
    block_names = ["edit_inpaint", "edit"]
    block_trigger_inputs = ["processed_mask_image", "image_latents"]

    @property
    def description(self):
        return (
            "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step.\n"
            + "This is an auto pipeline block that works for edit (img2img) and edit inpaint tasks.\n"
            + " - `QwenImageEditInpaintBeforeDenoiseStep` (edit_inpaint) is used when `processed_mask_image` is provided.\n"
            + " - `QwenImageEditBeforeDenoiseStep` (edit) is used when `image_latents` is provided and `processed_mask_image` is not provided.\n"
            + " - if `image_latents` or `processed_mask_image` is not provided, step will be skipped."
        )


## 2.6 QwenImage-Edit/auto denoise


class QwenImageEditAutoDenoiseStep(AutoPipelineBlocks):
    model_name = "qwenimage-edit"

    block_classes = [QwenImageEditInpaintDenoiseStep, QwenImageEditDenoiseStep]
    block_names = ["inpaint_denoise", "denoise"]
    block_trigger_inputs = ["processed_mask_image", "image_latents"]

    @property
    def description(self):
        return (
            "Denoise step that iteratively denoise the latents. \n"
            + "This block supports edit (img2img) and edit inpaint tasks for QwenImage Edit. \n"
            + " - `QwenImageEditInpaintDenoiseStep` (inpaint) is used when `processed_mask_image` is provided.\n"
            + " - `QwenImageEditDenoiseStep` (img2img) is used when `image_latents` is provided.\n"
            + " - if `processed_mask_image` or `image_latents` is not provided, step will be skipped."
        )


## 2.7 QwenImage-Edit/auto blocks & presets

YiYi Xu's avatar
YiYi Xu committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

class QwenImageEditCoreDenoiseStep(SequentialPipelineBlocks):
    model_name = "qwenimage-edit"
    block_classes = [
        QwenImageEditAutoInputStep,
        QwenImageEditAutoBeforeDenoiseStep,
        QwenImageEditAutoDenoiseStep,
    ]
    block_names = ["input", "before_denoise", "denoise"]

    @property
    def description(self):
        return (
            "Core step that performs the denoising process. \n"
            + " - `QwenImageEditAutoInputStep` (input) standardizes the inputs for the denoising step.\n"
            + " - `QwenImageEditAutoBeforeDenoiseStep` (before_denoise) prepares the inputs for the denoising step.\n"
            + " - `QwenImageEditAutoDenoiseStep` (denoise) iteratively denoises the latents.\n\n"
            + "This step support edit (img2img) and edit inpainting workflow for QwenImage Edit:\n"
            + " - When `processed_mask_image` is provided, it will be used for edit inpainting task.\n"
            + " - When `image_latents` is provided, it will be used for edit (img2img) task.\n"
        )


YiYi Xu's avatar
YiYi Xu committed
851
852
853
854
EDIT_AUTO_BLOCKS = InsertableDict(
    [
        ("text_encoder", QwenImageEditVLEncoderStep()),
        ("vae_encoder", QwenImageEditAutoVaeEncoderStep()),
YiYi Xu's avatar
YiYi Xu committed
855
        ("denoise", QwenImageEditCoreDenoiseStep()),
YiYi Xu's avatar
YiYi Xu committed
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        ("decode", QwenImageAutoDecodeStep()),
    ]
)


class QwenImageEditAutoBlocks(SequentialPipelineBlocks):
    model_name = "qwenimage-edit"
    block_classes = EDIT_AUTO_BLOCKS.values()
    block_names = EDIT_AUTO_BLOCKS.keys()

    @property
    def description(self):
        return (
            "Auto Modular pipeline for edit (img2img) and edit inpaint tasks using QwenImage-Edit.\n"
            + "- for edit (img2img) generation, you need to provide `image`\n"
            + "- for edit inpainting, you need to provide `mask_image` and `image`, optionally you can provide `padding_mask_crop` \n"
        )


# 3. all block presets supported in QwenImage & QwenImage-Edit


ALL_BLOCKS = {
    "text2image": TEXT2IMAGE_BLOCKS,
    "img2img": IMAGE2IMAGE_BLOCKS,
    "edit": EDIT_BLOCKS,
    "edit_inpaint": EDIT_INPAINT_BLOCKS,
    "inpaint": INPAINT_BLOCKS,
    "controlnet": CONTROLNET_BLOCKS,
    "auto": AUTO_BLOCKS,
    "edit_auto": EDIT_AUTO_BLOCKS,
}