test_modeling_common.py 9.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import tempfile
18
import unittest
19
from typing import Dict, List, Tuple
20
21
22
23

import numpy as np
import torch

24
from diffusers.modeling_utils import ModelMixin
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from diffusers.testing_utils import torch_device
from diffusers.training_utils import EMAModel


class ModelTesterMixin:
    def test_from_pretrained_save_pretrained(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = self.model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        with torch.no_grad():
43
44
45
46
47
            # Warmup pass when using mps (see #372)
            if torch_device == "mps" and isinstance(model, ModelMixin):
                _ = model(**self.dummy_input)
                _ = new_model(**self.dummy_input)

48
49
            image = model(**inputs_dict)
            if isinstance(image, dict):
50
                image = image.sample
51
52
53
54

            new_image = new_model(**inputs_dict)

            if isinstance(new_image, dict):
55
                new_image = new_image.sample
56
57
58
59
60
61
62
63
64

        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")

    def test_determinism(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
65

66
        with torch.no_grad():
67
68
69
70
            # Warmup pass when using mps (see #372)
            if torch_device == "mps" and isinstance(model, ModelMixin):
                model(**self.dummy_input)

71
72
            first = model(**inputs_dict)
            if isinstance(first, dict):
73
                first = first.sample
74
75
76

            second = model(**inputs_dict)
            if isinstance(second, dict):
77
                second = second.sample
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
96
                output = output.sample
97
98
99
100
101

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def test_forward_signature(self):
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["sample", "timestep"]
        self.assertListEqual(arg_names[:2], expected_arg_names)

    def test_model_from_config(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()

148
        # check if all parameters shape are the same
149
150
151
152
153
154
155
156
157
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
158
                output_1 = output_1.sample
159
160
161
162

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
163
                output_2 = output_2.sample
164
165
166

        self.assertEqual(output_1.shape, output_2.shape)

167
    @unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
168
169
170
171
172
173
174
175
176
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
177
            output = output.sample
178
179
180
181
182

        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

183
    @unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
184
185
186
187
188
189
190
191
192
193
194
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)

        if isinstance(output, dict):
195
            output = output.sample
196
197
198
199
200

        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)
201

202
    def test_outputs_equivalence(self):
203
        def set_nan_tensor_to_zero(t):
204
205
206
207
208
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
209
            t[t != t] = 0
210
            return t.to(device)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

240
241
242
243
244
245
246
        with torch.no_grad():
            # Warmup pass when using mps (see #372)
            if torch_device == "mps" and isinstance(model, ModelMixin):
                model(**self.dummy_input)

            outputs_dict = model(**inputs_dict)
            outputs_tuple = model(**inputs_dict, return_dict=False)
247
248

        recursive_check(outputs_tuple, outputs_dict)