unet_i2vgen_xl.py 29 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import UNet2DConditionLoadersMixin
from ...utils import logging
from ..activations import get_activation
24
from ..attention import Attention, AttentionMixin, FeedForward
25
26
27
28
29
from ..attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttnAddedKVProcessor,
    AttnProcessor,
30
    FusedAttnProcessor2_0,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
)
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
from ..transformers.transformer_temporal import TransformerTemporalModel
from .unet_3d_blocks import (
    UNetMidBlock3DCrossAttn,
    get_down_block,
    get_up_block,
)
from .unet_3d_condition import UNet3DConditionOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class I2VGenXLTransformerTemporalEncoder(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        activation_fn: str = "geglu",
        upcast_attention: bool = False,
        ff_inner_dim: Optional[int] = None,
        dropout: int = 0.0,
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=1e-5)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=False,
            upcast_attention=upcast_attention,
            out_bias=True,
        )
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=False,
            inner_dim=ff_inner_dim,
            bias=True,
        )

    def forward(
        self,
79
80
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
81
82
83
84
85
86
        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

87
        ff_output = self.ff(hidden_states)
88
89
90
91
92
93
94
        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


95
class I2VGenXLUNet(ModelMixin, AttentionMixin, ConfigMixin, UNet2DConditionLoadersMixin):
96
    r"""
97
98
    I2VGenXL UNet. It is a conditional 3D UNet model that takes a noisy sample, conditional state, and a timestep and
    returns a sample-shaped output.
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
            If `None`, normalization and activation layers is skipped in post-processing.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
118
        attention_head_dim (`int`, *optional*, defaults to 64): Attention head dim.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        num_attention_heads (`int`, *optional*): The number of attention heads.
    """

    _supports_gradient_checkpointing = False

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        down_block_types: Tuple[str, ...] = (
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "DownBlock3D",
        ),
        up_block_types: Tuple[str, ...] = (
            "UpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        norm_num_groups: Optional[int] = 32,
        cross_attention_dim: int = 1024,
146
147
        attention_head_dim: Union[int, Tuple[int]] = 64,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
148
149
150
    ):
        super().__init__()

151
152
153
154
        # When we first integrated the UNet into the library, we didn't have `attention_head_dim`. As a consequence
        # of that, we used `num_attention_heads` for arguments that actually denote attention head dimension. This
        # is why we ignore `num_attention_heads` and calculate it from `attention_head_dims` below.
        # This is still an incorrect way of calculating `num_attention_heads` but we need to stick to it
155
        # without running proper deprecation cycles for the {down,mid,up} blocks which are a
156
157
158
        # part of the public API.
        num_attention_heads = attention_head_dim

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        # input
        self.conv_in = nn.Conv2d(in_channels + in_channels, block_out_channels[0], kernel_size=3, padding=1)

        self.transformer_in = TransformerTemporalModel(
            num_attention_heads=8,
sayakpaul's avatar
sayakpaul committed
180
            attention_head_dim=num_attention_heads,
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            in_channels=block_out_channels[0],
            num_layers=1,
            norm_num_groups=norm_num_groups,
        )

        # image embedding
        self.image_latents_proj_in = nn.Sequential(
            nn.Conv2d(4, in_channels * 4, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(in_channels * 4, in_channels * 4, 3, stride=1, padding=1),
            nn.SiLU(),
            nn.Conv2d(in_channels * 4, in_channels, 3, stride=1, padding=1),
        )
        self.image_latents_temporal_encoder = I2VGenXLTransformerTemporalEncoder(
            dim=in_channels,
            num_attention_heads=2,
            ff_inner_dim=in_channels * 4,
            attention_head_dim=in_channels,
            activation_fn="gelu",
        )
        self.image_latents_context_embedding = nn.Sequential(
            nn.Conv2d(4, in_channels * 8, 3, padding=1),
            nn.SiLU(),
            nn.AdaptiveAvgPool2d((32, 32)),
            nn.Conv2d(in_channels * 8, in_channels * 16, 3, stride=2, padding=1),
            nn.SiLU(),
            nn.Conv2d(in_channels * 16, cross_attention_dim, 3, stride=2, padding=1),
        )

        # other embeddings -- time, context, fps, etc.
        time_embed_dim = block_out_channels[0] * 4
        self.time_proj = Timesteps(block_out_channels[0], True, 0)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn="silu")
        self.context_embedding = nn.Sequential(
            nn.Linear(cross_attention_dim, time_embed_dim),
            nn.SiLU(),
            nn.Linear(time_embed_dim, cross_attention_dim * in_channels),
        )
        self.fps_embedding = nn.Sequential(
            nn.Linear(timestep_input_dim, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim)
        )

        # blocks
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=1e-05,
                resnet_act_fn="silu",
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads[i],
                downsample_padding=1,
                dual_cross_attention=False,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock3DCrossAttn(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            resnet_eps=1e-05,
            resnet_act_fn="silu",
            output_scale_factor=1,
            cross_attention_dim=cross_attention_dim,
            num_attention_heads=num_attention_heads[-1],
            resnet_groups=norm_num_groups,
            dual_cross_attention=False,
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=1e-05,
                resnet_act_fn="silu",
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=reversed_num_attention_heads[i],
                dual_cross_attention=False,
                resolution_idx=i,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-05)
        self.conv_act = get_activation("silu")
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
    def disable_forward_chunking(self):
        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, None, 0)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
    def enable_freeu(self, s1, s2, b1, b2):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
375
        r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
                    setattr(upsample_block, k, None)

407
408
409
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
410
411
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
412

Steven Liu's avatar
Steven Liu committed
413
        > [!WARNING] > This API is 🧪 experimental.
414
415
416
417
418
419
420
421
422
423
424
425
426
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

427
428
        self.set_attn_processor(FusedAttnProcessor2_0())

429
430
431
432
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

Steven Liu's avatar
Steven Liu committed
433
        > [!WARNING] > This API is 🧪 experimental.
434
435
436
437
438

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

439
440
    def forward(
        self,
441
        sample: torch.Tensor,
442
443
444
445
446
447
448
449
        timestep: Union[torch.Tensor, float, int],
        fps: torch.Tensor,
        image_latents: torch.Tensor,
        image_embeddings: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
450
    ) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]:
451
452
453
454
        r"""
        The [`I2VGenXLUNet`] forward method.

        Args:
455
            sample (`torch.Tensor`):
456
                The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`.
457
            timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
458
            fps (`torch.Tensor`): Frames per second for the video being generated. Used as a "micro-condition".
459
460
            image_latents (`torch.Tensor`): Image encodings from the VAE.
            image_embeddings (`torch.Tensor`):
461
                Projection embeddings of the conditioning image computed with a vision encoder.
462
            encoder_hidden_states (`torch.Tensor`):
463
464
465
466
467
468
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
469
                Whether or not to return a [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] instead of a plain
470
471
472
                tuple.

        Returns:
473
474
475
            [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] is returned,
                otherwise a `tuple` is returned where the first element is the sample tensor.
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        """
        batch_size, channels, num_frames, height, width = sample.shape

        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # 1. time
494
495
496
497
498
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass `timesteps` as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
499
            is_npu = sample.device.type == "npu"
500
            if isinstance(timesteps, float):
501
                dtype = torch.float32 if (is_mps or is_npu) else torch.float64
502
            else:
503
                dtype = torch.int32 if (is_mps or is_npu) else torch.int64
504
505
506
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])
        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        t_emb = self.time_embedding(t_emb, timestep_cond)

        # 2. FPS
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        fps = fps.expand(fps.shape[0])
        fps_emb = self.fps_embedding(self.time_proj(fps).to(dtype=self.dtype))

        # 3. time + FPS embeddings.
        emb = t_emb + fps_emb
525
        emb = emb.repeat_interleave(num_frames, dim=0, output_size=emb.shape[0] * num_frames)
526
527
528
529
530
531
532
533
534

        # 4. context embeddings.
        # The context embeddings consist of both text embeddings from the input prompt
        # AND the image embeddings from the input image. For images, both VAE encodings
        # and the CLIP image embeddings are incorporated.
        # So the final `context_embeddings` becomes the query for cross-attention.
        context_emb = sample.new_zeros(batch_size, 0, self.config.cross_attention_dim)
        context_emb = torch.cat([context_emb, encoder_hidden_states], dim=1)

535
536
537
538
539
540
541
        image_latents_for_context_embds = image_latents[:, :, :1, :]
        image_latents_context_embs = image_latents_for_context_embds.permute(0, 2, 1, 3, 4).reshape(
            image_latents_for_context_embds.shape[0] * image_latents_for_context_embds.shape[2],
            image_latents_for_context_embds.shape[1],
            image_latents_for_context_embds.shape[3],
            image_latents_for_context_embds.shape[4],
        )
542
543
544
545
546
547
548
549
550
551
552
        image_latents_context_embs = self.image_latents_context_embedding(image_latents_context_embs)

        _batch_size, _channels, _height, _width = image_latents_context_embs.shape
        image_latents_context_embs = image_latents_context_embs.permute(0, 2, 3, 1).reshape(
            _batch_size, _height * _width, _channels
        )
        context_emb = torch.cat([context_emb, image_latents_context_embs], dim=1)

        image_emb = self.context_embedding(image_embeddings)
        image_emb = image_emb.view(-1, self.config.in_channels, self.config.cross_attention_dim)
        context_emb = torch.cat([context_emb, image_emb], dim=1)
553
        context_emb = context_emb.repeat_interleave(num_frames, dim=0, output_size=context_emb.shape[0] * num_frames)
554

555
556
557
558
559
560
        image_latents = image_latents.permute(0, 2, 1, 3, 4).reshape(
            image_latents.shape[0] * image_latents.shape[2],
            image_latents.shape[1],
            image_latents.shape[3],
            image_latents.shape[4],
        )
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        image_latents = self.image_latents_proj_in(image_latents)
        image_latents = (
            image_latents[None, :]
            .reshape(batch_size, num_frames, channels, height, width)
            .permute(0, 3, 4, 1, 2)
            .reshape(batch_size * height * width, num_frames, channels)
        )
        image_latents = self.image_latents_temporal_encoder(image_latents)
        image_latents = image_latents.reshape(batch_size, height, width, num_frames, channels).permute(0, 4, 3, 1, 2)

        # 5. pre-process
        sample = torch.cat([sample, image_latents], dim=1)
        sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
        sample = self.conv_in(sample)
        sample = self.transformer_in(
            sample,
            num_frames=num_frames,
            cross_attention_kwargs=cross_attention_kwargs,
            return_dict=False,
        )[0]

        # 6. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=context_emb,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)

            down_block_res_samples += res_samples

        # 7. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=context_emb,
                num_frames=num_frames,
                cross_attention_kwargs=cross_attention_kwargs,
            )
        # 8. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=context_emb,
                    upsample_size=upsample_size,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    num_frames=num_frames,
                )

        # 9. post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)

        sample = self.conv_out(sample)

        # reshape to (batch, channel, framerate, width, height)
        sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)

        if not return_dict:
            return (sample,)

        return UNet3DConditionOutput(sample=sample)