unet_3d_condition.py 30.8 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
# Copyright 2025 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
# Copyright 2025 The ModelScope Team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

16
17
18
19
20
21
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

22
23
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import UNet2DConditionLoadersMixin
24
from ...utils import BaseOutput, logging
25
from ..activations import get_activation
26
from ..attention import AttentionMixin
27
from ..attention_processor import (
28
29
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
30
    Attention,
31
32
    AttnAddedKVProcessor,
    AttnProcessor,
33
    FusedAttnProcessor2_0,
34
)
35
36
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
37
from ..transformers.transformer_temporal import TransformerTemporalModel
38
39
40
41
42
43
44
45
46
47
48
49
50
from .unet_3d_blocks import (
    UNetMidBlock3DCrossAttn,
    get_down_block,
    get_up_block,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNet3DConditionOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
51
52
    The output of [`UNet3DConditionModel`].

53
    Args:
54
        sample (`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`):
Steven Liu's avatar
Steven Liu committed
55
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
56
57
    """

58
    sample: torch.Tensor
59
60


61
class UNet3DConditionModel(ModelMixin, AttentionMixin, ConfigMixin, UNet2DConditionLoadersMixin):
62
    r"""
Steven Liu's avatar
Steven Liu committed
63
64
    A conditional 3D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
65

Steven Liu's avatar
Steven Liu committed
66
67
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
68
69
70
71
72
73

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
74
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D")`):
75
            The tuple of downsample blocks to use.
76
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D")`):
77
78
79
80
81
82
83
84
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
85
            If `None`, normalization and activation layers is skipped in post-processing.
86
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
87
88
        cross_attention_dim (`int`, *optional*, defaults to 1024): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 64): The dimension of the attention heads.
89
        num_attention_heads (`int`, *optional*): The number of attention heads.
90
91
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
92
93
94
    """

    _supports_gradient_checkpointing = False
Aryan's avatar
Aryan committed
95
    _skip_layerwise_casting_patterns = ["norm", "time_embedding"]
96
97
98
99
100
101
102

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
103
        down_block_types: Tuple[str, ...] = (
104
105
106
107
108
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "DownBlock3D",
        ),
109
110
111
112
113
114
115
        up_block_types: Tuple[str, ...] = (
            "UpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
116
117
118
119
120
121
122
123
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1024,
        attention_head_dim: Union[int, Tuple[int]] = 64,
124
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
125
        time_cond_proj_dim: Optional[int] = None,
126
127
128
129
130
    ):
        super().__init__()

        self.sample_size = sample_size

131
132
133
134
135
        if num_attention_heads is not None:
            raise NotImplementedError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

136
137
138
139
140
141
142
143
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

144
145
146
147
148
149
150
151
152
153
154
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

155
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
156
            raise ValueError(
157
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            )

        # input
        conv_in_kernel = 3
        conv_out_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        time_embed_dim = block_out_channels[0] * 4
        self.time_proj = Timesteps(block_out_channels[0], True, 0)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
177
            cond_proj_dim=time_cond_proj_dim,
178
179
180
181
182
183
184
        )

        self.transformer_in = TransformerTemporalModel(
            num_attention_heads=8,
            attention_head_dim=attention_head_dim,
            in_channels=block_out_channels[0],
            num_layers=1,
Dhruv Nair's avatar
Dhruv Nair committed
185
            norm_num_groups=norm_num_groups,
186
187
188
189
190
191
        )

        # class embedding
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

192
193
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
213
                num_attention_heads=num_attention_heads[i],
214
215
216
217
218
219
220
221
222
223
224
225
226
                downsample_padding=downsample_padding,
                dual_cross_attention=False,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock3DCrossAttn(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            cross_attention_dim=cross_attention_dim,
227
            num_attention_heads=num_attention_heads[-1],
228
229
230
231
232
233
234
235
236
            resnet_groups=norm_num_groups,
            dual_cross_attention=False,
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
237
        reversed_num_attention_heads = list(reversed(num_attention_heads))
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
266
                num_attention_heads=reversed_num_attention_heads[i],
267
                dual_cross_attention=False,
268
                resolution_idx=i,
269
270
271
272
273
274
275
276
277
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
278
            self.conv_act = get_activation("silu")
279
280
281
282
283
284
285
286
287
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )

288
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
289
    def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
290
291
292
        r"""
        Enable sliced attention computation.

Steven Liu's avatar
Steven Liu committed
293
294
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
295
296
297

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
298
299
300
301
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
302
303
304
        """
        sliceable_head_dims = []

305
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
306
307
308
309
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
310
                fn_recursive_retrieve_sliceable_dims(child)
311
312
313

        # retrieve number of attention layers
        for module in self.children():
314
            fn_recursive_retrieve_sliceable_dims(module)
315

316
        num_sliceable_layers = len(sliceable_head_dims)
317
318
319
320
321
322
323

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
324
            slice_size = num_sliceable_layers * [1]
325

326
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

354
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    def disable_forward_chunking(self):
        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, None, 0)

394
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
395
396
397
398
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
399
400
401
402
403
404
405
406
407
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

408
        self.set_attn_processor(processor)
409

410
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
411
    def enable_freeu(self, s1, s2, b1, b2):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
412
        r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

435
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
436
437
438
439
440
    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
441
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
442
443
                    setattr(upsample_block, k, None)

444
445
446
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
447
448
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
449

Steven Liu's avatar
Steven Liu committed
450
        > [!WARNING] > This API is 🧪 experimental.
451
452
453
454
455
456
457
458
459
460
461
462
463
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

464
465
        self.set_attn_processor(FusedAttnProcessor2_0())

466
467
468
469
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

Steven Liu's avatar
Steven Liu committed
470
        > [!WARNING] > This API is 🧪 experimental.
471
472
473
474
475

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

476
477
    def forward(
        self,
478
        sample: torch.Tensor,
479
480
481
482
483
484
485
486
487
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        return_dict: bool = True,
488
    ) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]:
489
        r"""
Steven Liu's avatar
Steven Liu committed
490
491
        The [`UNet3DConditionModel`] forward method.

492
        Args:
493
            sample (`torch.Tensor`):
494
                The noisy input tensor with the following shape `(batch, num_channels, num_frames, height, width`.
495
496
            timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
497
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
515
            return_dict (`bool`, *optional*, defaults to `True`):
516
                Whether or not to return a [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] instead of a plain
Steven Liu's avatar
Steven Liu committed
517
                tuple.
518
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
519
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
520
521

        Returns:
522
523
524
            [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] is returned,
                otherwise a `tuple` is returned where the first element is the sample tensor.
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
551
            is_npu = sample.device.type == "npu"
552
            if isinstance(timestep, float):
553
                dtype = torch.float32 if (is_mps or is_npu) else torch.float64
554
            else:
555
                dtype = torch.int32 if (is_mps or is_npu) else torch.int64
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        num_frames = sample.shape[2]
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)
572
573
574
575
        emb = emb.repeat_interleave(num_frames, dim=0, output_size=emb.shape[0] * num_frames)
        encoder_hidden_states = encoder_hidden_states.repeat_interleave(
            num_frames, dim=0, output_size=encoder_hidden_states.shape[0] * num_frames
        )
576
577
578
579
580

        # 2. pre-process
        sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
        sample = self.conv_in(sample)

581
        sample = self.transformer_in(
582
583
584
585
586
            sample,
            num_frames=num_frames,
            cross_attention_kwargs=cross_attention_kwargs,
            return_dict=False,
        )[0]
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)

            down_block_res_samples += res_samples

        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                num_frames=num_frames,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        if mid_block_additional_residual is not None:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    num_frames=num_frames,
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)

        sample = self.conv_out(sample)

        # reshape to (batch, channel, framerate, width, height)
        sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)

        if not return_dict:
            return (sample,)

        return UNet3DConditionOutput(sample=sample)