test_lumina_nextdit.py 4.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gc
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM

from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline
from diffusers.utils.testing_utils import (
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin


class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = LuminaText2ImgPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])

Marc Sun's avatar
Marc Sun committed
34
    supports_dduf = False
Aryan's avatar
Aryan committed
35
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
36
    test_group_offloading = True
Marc Sun's avatar
Marc Sun committed
37

38
39
40
    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = LuminaNextDiT2DModel(
41
            sample_size=4,
42
43
            patch_size=2,
            in_channels=4,
44
            hidden_size=4,
45
            num_layers=2,
46
            num_attention_heads=1,
47
48
49
50
51
52
            num_kv_heads=1,
            multiple_of=16,
            ffn_dim_multiplier=None,
            norm_eps=1e-5,
            learn_sigma=True,
            qk_norm=True,
53
            cross_attention_dim=8,
54
55
56
57
58
59
60
61
62
63
            scaling_factor=1.0,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL()

        scheduler = FlowMatchEulerDiscreteScheduler()
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")

        torch.manual_seed(0)
        config = GemmaConfig(
64
65
            head_dim=2,
            hidden_size=8,
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            intermediate_size=37,
            num_attention_heads=4,
            num_hidden_layers=2,
            num_key_value_heads=4,
        )
        text_encoder = GemmaForCausalLM(config)

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder.eval(),
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
        }
        return inputs

97
98
99
100
    @unittest.skip("xformers attention processor does not exist for Lumina")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

@slow
@require_torch_gpu
class LuminaText2ImgPipelineSlowTests(unittest.TestCase):
    pipeline_class = LuminaText2ImgPipeline
    repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        return {
            "prompt": "A photo of a cat",
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "generator": generator,
        }

    def test_lumina_inference(self):
        pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
        pipe.enable_model_cpu_offload()

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]
        expected_slice = np.array(
            [
                [0.17773438, 0.18554688, 0.22070312],
                [0.046875, 0.06640625, 0.10351562],
                [0.0, 0.0, 0.02148438],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4