glide_ddim.py 3.39 KB
Newer Older
Patrick von Platen's avatar
up  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
15
import numpy as np
Patrick von Platen's avatar
up  
Patrick von Platen committed
16
17
18
19
20
21
22
23
24
from torch import nn

from ..configuration_utils import ConfigMixin
from .schedulers_utils import linear_beta_schedule, betas_for_alpha_bar


SAMPLING_CONFIG_NAME = "scheduler_config.json"


25
class GlideDDIMScheduler(nn.Module, ConfigMixin):
Patrick von Platen's avatar
up  
Patrick von Platen committed
26
27
28
29
30
31
32

    config_name = SAMPLING_CONFIG_NAME

    def __init__(
        self,
        timesteps=1000,
        beta_schedule="linear",
33
        variance_type="fixed_large"
Patrick von Platen's avatar
up  
Patrick von Platen committed
34
35
36
37
38
39
40
41
42
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_schedule=beta_schedule,
        )
        self.num_timesteps = int(timesteps)

        if beta_schedule == "linear":
43
44
45
46
47
            # Linear schedule from Ho et al, extended to work for any number of
            # diffusion steps.
            scale = 1000 / self.num_timesteps
            beta_start = scale * 0.0001
            beta_end = scale * 0.02
Patrick von Platen's avatar
up  
Patrick von Platen committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
            betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)

        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)

        if variance_type == "fixed_small":
            log_variance = torch.log(variance.clamp(min=1e-20))
        elif variance_type == "fixed_large":
            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))

        self.register_buffer("betas", betas.to(torch.float32))
        self.register_buffer("alphas", alphas.to(torch.float32))
        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

        self.register_buffer("log_variance", log_variance.to(torch.float32))

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return torch.tensor(1.0)
        return self.alphas_cumprod[time_step]

    def sample_variance(self, time_step, shape, device, generator=None):
        variance = self.log_variance[time_step]
        nonzero_mask = torch.tensor([1 - (time_step == 0)], device=device).float()[None, :]

        noise = self.sample_noise(shape, device=device, generator=generator)

        sampled_variance = nonzero_mask * (0.5 * variance).exp()
        sampled_variance = sampled_variance * noise

        return sampled_variance

    def sample_noise(self, shape, device, generator=None):
        # always sample on CPU to be deterministic
        return torch.randn(shape, generator=generator).to(device)

    def __len__(self):
96
        return self.num_timesteps