attention_processor.py 69.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from importlib import import_module
Patrick von Platen's avatar
Patrick von Platen committed
15
16
17
18
19
20
from typing import Callable, Optional, Union

import torch
import torch.nn.functional as F
from torch import nn

Dhruv Nair's avatar
Dhruv Nair committed
21
from ..utils import deprecate, logging
Patrick von Platen's avatar
Patrick von Platen committed
22
from ..utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
23
from ..utils.torch_utils import maybe_allow_in_graph
24
from .lora import LoRACompatibleLinear, LoRALinearLayer
Patrick von Platen's avatar
Patrick von Platen committed
25
26
27
28
29
30
31
32
33
34
35
36


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


37
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
63
64
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
Patrick von Platen's avatar
Patrick von Platen committed
65
66
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
67
        spatial_norm_dim: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
68
69
        out_bias: bool = True,
        scale_qk: bool = True,
70
        only_cross_attention: bool = False,
71
72
73
74
        eps: float = 1e-5,
        rescale_output_factor: float = 1.0,
        residual_connection: bool = False,
        _from_deprecated_attn_block=False,
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
        processor: Optional["AttnProcessor"] = None,
    ):
        super().__init__()
78
79
        self.inner_dim = dim_head * heads
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
80
81
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
82
83
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
84
        self.dropout = dropout
85
86
87
88

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block
Patrick von Platen's avatar
Patrick von Platen committed
89

90
91
        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
95
96
97
98
99

        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
100
101
102
103
104
105
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
106
107

        if norm_num_groups is not None:
108
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
109
110
111
        else:
            self.group_norm = None

YiYi Xu's avatar
YiYi Xu committed
112
113
114
115
116
        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
        else:
            self.spatial_norm = None

117
118
119
        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
120
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
121
122
123
124
125
126
127
128
129
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
130
                norm_cross_num_channels = self.cross_attention_dim
131
132
133
134
135
136
137
138

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )
Patrick von Platen's avatar
Patrick von Platen committed
139

140
        self.to_q = LoRACompatibleLinear(query_dim, self.inner_dim, bias=bias)
141
142
143

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
144
145
            self.to_k = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias)
            self.to_v = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias)
146
147
148
        else:
            self.to_k = None
            self.to_v = None
Patrick von Platen's avatar
Patrick von Platen committed
149
150

        if self.added_kv_proj_dim is not None:
151
152
            self.add_k_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim)
            self.add_v_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
153
154

        self.to_out = nn.ModuleList([])
155
        self.to_out.append(LoRACompatibleLinear(self.inner_dim, query_dim, bias=out_bias))
Patrick von Platen's avatar
Patrick von Platen committed
156
157
158
159
160
161
162
163
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
164
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
Patrick von Platen's avatar
Patrick von Platen committed
165
166
167
168
169
170
171
            )
        self.set_processor(processor)

    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
        is_lora = hasattr(self, "processor") and isinstance(
172
            self.processor,
173
            LORA_ATTENTION_PROCESSORS,
Patrick von Platen's avatar
Patrick von Platen committed
174
        )
175
176
177
        is_custom_diffusion = hasattr(self, "processor") and isinstance(
            self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)
        )
178
179
180
181
182
183
184
185
186
187
        is_added_kv_processor = hasattr(self, "processor") and isinstance(
            self.processor,
            (
                AttnAddedKVProcessor,
                AttnAddedKVProcessor2_0,
                SlicedAttnAddedKVProcessor,
                XFormersAttnAddedKVProcessor,
                LoRAAttnAddedKVProcessor,
            ),
        )
Patrick von Platen's avatar
Patrick von Platen committed
188
189

        if use_memory_efficient_attention_xformers:
190
            if is_added_kv_processor and (is_lora or is_custom_diffusion):
Patrick von Platen's avatar
Patrick von Platen committed
191
                raise NotImplementedError(
Kashif Rasul's avatar
Kashif Rasul committed
192
                    f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
Patrick von Platen's avatar
Patrick von Platen committed
193
                )
194
            if not is_xformers_available():
Patrick von Platen's avatar
Patrick von Platen committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

            if is_lora:
219
220
                # TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
                # variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
Patrick von Platen's avatar
Patrick von Platen committed
221
222
223
224
225
226
227
228
                processor = LoRAXFormersAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
229
230
231
232
233
234
235
236
237
238
239
            elif is_custom_diffusion:
                processor = CustomDiffusionXFormersAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
240
241
242
243
244
245
246
247
248
            elif is_added_kv_processor:
                # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                # throw warning
                logger.info(
                    "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
                )
                processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
Patrick von Platen's avatar
Patrick von Platen committed
249
250
251
252
            else:
                processor = XFormersAttnProcessor(attention_op=attention_op)
        else:
            if is_lora:
253
254
255
256
                attn_processor_class = (
                    LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                )
                processor = attn_processor_class(
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
260
261
262
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
263
264
265
266
267
268
269
270
271
272
            elif is_custom_diffusion:
                processor = CustomDiffusionAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
Patrick von Platen's avatar
Patrick von Platen committed
273
            else:
274
275
276
277
278
279
280
281
282
                # set attention processor
                # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
                # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
                # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
                processor = (
                    AttnProcessor2_0()
                    if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
                    else AttnProcessor()
                )
Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296

        self.set_processor(processor)

    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = AttnAddedKVProcessor()
        else:
297
298
299
300
301
302
303
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
Patrick von Platen's avatar
Patrick von Platen committed
304
305
306
307

        self.set_processor(processor)

    def set_processor(self, processor: "AttnProcessor"):
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        if (
            hasattr(self, "processor")
            and not isinstance(processor, LORA_ATTENTION_PROCESSORS)
            and self.to_q.lora_layer is not None
        ):
            deprecate(
                "set_processor to offload LoRA",
                "0.26.0",
                "In detail, removing LoRA layers via calling `set_processor` or `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
            )
            # TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
            # We need to remove all LoRA layers
            for module in self.modules():
                if hasattr(module, "set_lora_layer"):
                    module.set_lora_layer(None)

Patrick von Platen's avatar
Patrick von Platen committed
324
325
326
327
328
329
330
331
332
333
334
335
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
        if not return_deprecated_lora:
            return self.processor

        # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
        # serialization format for LoRA Attention Processors. It should be deleted once the integration
        # with PEFT is completed.
        is_lora_activated = {
            name: module.lora_layer is not None
            for name, module in self.named_modules()
            if hasattr(module, "lora_layer")
        }

        # 1. if no layer has a LoRA activated we can return the processor as usual
        if not any(is_lora_activated.values()):
            return self.processor

        # If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
        is_lora_activated.pop("add_k_proj", None)
        is_lora_activated.pop("add_v_proj", None)
        # 2. else it is not posssible that only some layers have LoRA activated
        if not all(is_lora_activated.values()):
            raise ValueError(
                f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
            )

        # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
        non_lora_processor_cls_name = self.processor.__class__.__name__
        lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)

        hidden_size = self.inner_dim

        # now create a LoRA attention processor from the LoRA layers
        if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
            kwargs = {
                "cross_attention_dim": self.cross_attention_dim,
                "rank": self.to_q.lora_layer.rank,
                "network_alpha": self.to_q.lora_layer.network_alpha,
                "q_rank": self.to_q.lora_layer.rank,
                "q_hidden_size": self.to_q.lora_layer.out_features,
                "k_rank": self.to_k.lora_layer.rank,
                "k_hidden_size": self.to_k.lora_layer.out_features,
                "v_rank": self.to_v.lora_layer.rank,
                "v_hidden_size": self.to_v.lora_layer.out_features,
                "out_rank": self.to_out[0].lora_layer.rank,
                "out_hidden_size": self.to_out[0].lora_layer.out_features,
            }

            if hasattr(self.processor, "attention_op"):
385
                kwargs["attention_op"] = self.processor.attention_op
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

            lora_processor = lora_processor_cls(hidden_size, **kwargs)
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
        elif lora_processor_cls == LoRAAttnAddedKVProcessor:
            lora_processor = lora_processor_cls(
                hidden_size,
                cross_attention_dim=self.add_k_proj.weight.shape[0],
                rank=self.to_q.lora_layer.rank,
                network_alpha=self.to_q.lora_layer.network_alpha,
            )
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())

            # only save if used
            if self.add_k_proj.lora_layer is not None:
                lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
                lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
            else:
                lora_processor.add_k_proj_lora = None
                lora_processor.add_v_proj_lora = None
        else:
            raise ValueError(f"{lora_processor_cls} does not exist.")

        return lora_processor

Patrick von Platen's avatar
Patrick von Platen committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

    def batch_to_head_dim(self, tensor):
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

435
    def head_to_batch_dim(self, tensor, out_dim=3):
Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
439
440
441
442
443
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
            tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)

Patrick von Platen's avatar
Patrick von Platen committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        return tensor

    def get_attention_scores(self, query, key, attention_mask=None):
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
468
        del baddbmm_input
Patrick von Platen's avatar
Patrick von Platen committed
469
470
471
472
473

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
474
475
        del attention_scores

Patrick von Platen's avatar
Patrick von Platen committed
476
477
478
479
        attention_probs = attention_probs.to(dtype)

        return attention_probs

480
    def prepare_attention_mask(self, attention_mask, target_length, batch_size, out_dim=3):
Patrick von Platen's avatar
Patrick von Platen committed
481
482
483
484
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

485
        current_length: int = attention_mask.shape[-1]
486
        if current_length != target_length:
Patrick von Platen's avatar
Patrick von Platen committed
487
488
489
490
491
492
493
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
494
495
496
497
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
Patrick von Platen's avatar
Patrick von Platen committed
498
499
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

500
501
502
503
504
505
506
        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
507
508
        return attention_mask

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    def norm_encoder_hidden_states(self, encoder_hidden_states):
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
528
529

class AttnProcessor:
530
531
532
533
    r"""
    Default processor for performing attention-related computations.
    """

Patrick von Platen's avatar
Patrick von Platen committed
534
535
536
537
538
539
    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
YiYi Xu's avatar
YiYi Xu committed
540
        temb=None,
541
        scale=1.0,
Patrick von Platen's avatar
Patrick von Platen committed
542
    ):
543
544
        residual = hidden_states

YiYi Xu's avatar
YiYi Xu committed
545
546
547
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

548
549
550
551
552
553
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
554
555
556
557
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
558
559
560
561

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

562
        query = attn.to_q(hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
563
564
565

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
566
567
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
568

569
570
        key = attn.to_k(encoder_hidden_states, scale=scale)
        value = attn.to_v(encoder_hidden_states, scale=scale)
571

Patrick von Platen's avatar
Patrick von Platen committed
572
573
574
575
576
577
578
579
580
        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
581
        hidden_states = attn.to_out[0](hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
582
583
584
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

585
586
587
588
589
590
591
592
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
593
594
595
        return hidden_states


596
class CustomDiffusionAttnProcessor(nn.Module):
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    r"""
    Processor for implementing attention for the Custom Diffusion method.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    def __init__(
        self,
        train_kv=True,
        train_q_out=True,
        hidden_size=None,
        cross_attention_dim=None,
        out_bias=True,
        dropout=0.0,
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
645
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
646
        else:
647
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
648
649
650
651
652
653
654
655
656
657

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
658
659
660
661
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
694
class AttnAddedKVProcessor:
695
696
697
698
699
    r"""
    Processor for performing attention-related computations with extra learnable key and value matrices for the text
    encoder.
    """

700
    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
701
702
703
704
705
706
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

707
708
709
710
711
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
712
713
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

714
        query = attn.to_q(hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
715
716
        query = attn.head_to_batch_dim(query)

717
718
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states, scale=scale)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
719
720
721
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

722
        if not attn.only_cross_attention:
723
724
            key = attn.to_k(hidden_states, scale=scale)
            value = attn.to_v(hidden_states, scale=scale)
725
726
727
728
729
730
731
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
732
733
734
735
736
737

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
738
        hidden_states = attn.to_out[0](hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
739
740
741
742
743
744
745
746
747
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


748
class AttnAddedKVProcessor2_0:
749
750
751
752
753
    r"""
    Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
    learnable key and value matrices for the text encoder.
    """

754
755
756
757
758
759
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

760
    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
761
762
763
764
765
766
767
768
769
770
771
772
773
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

774
        query = attn.to_q(hidden_states, scale=scale)
775
776
777
778
779
780
781
782
        query = attn.head_to_batch_dim(query, out_dim=4)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)

        if not attn.only_cross_attention:
783
784
            key = attn.to_k(hidden_states, scale=scale)
            value = attn.to_v(hidden_states, scale=scale)
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
            key = attn.head_to_batch_dim(key, out_dim=4)
            value = attn.head_to_batch_dim(value, out_dim=4)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])

        # linear proj
801
        hidden_states = attn.to_out[0](hidden_states, scale=scale)
Will Berman's avatar
Will Berman committed
802
803
804
805
806
807
808
809
810
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
class XFormersAttnAddedKVProcessor:
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
876
class XFormersAttnProcessor:
877
878
879
880
881
882
883
884
885
886
887
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

Patrick von Platen's avatar
Patrick von Platen committed
888
889
890
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

891
892
893
894
895
896
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
897
        temb: Optional[torch.FloatTensor] = None,
898
        scale: float = 1.0,
899
    ):
900
901
        residual = hidden_states

902
903
904
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

905
906
907
908
909
910
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

911
        batch_size, key_tokens, _ = (
Patrick von Platen's avatar
Patrick von Platen committed
912
913
914
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

915
916
917
918
919
920
921
922
923
924
        attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
        if attention_mask is not None:
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)
Patrick von Platen's avatar
Patrick von Platen committed
925

926
927
928
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

929
        query = attn.to_q(hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
930
931
932

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
933
934
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
935

936
937
        key = attn.to_k(encoder_hidden_states, scale=scale)
        value = attn.to_v(encoder_hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
938
939
940
941
942
943
944
945
946
947
948
949

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
950
        hidden_states = attn.to_out[0](hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
951
952
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
953
954
955
956
957
958
959
960
961

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
962
963
964
965
        return hidden_states


class AttnProcessor2_0:
966
967
968
969
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

Patrick von Platen's avatar
Patrick von Platen committed
970
971
972
973
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

YiYi Xu's avatar
YiYi Xu committed
974
975
976
977
978
979
980
    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
981
        scale: float = 1.0,
YiYi Xu's avatar
YiYi Xu committed
982
    ):
983
984
        residual = hidden_states

YiYi Xu's avatar
YiYi Xu committed
985
986
987
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

988
989
990
991
992
993
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
994
995
996
997
998
999
1000
1001
1002
1003
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

1004
1005
1006
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1007
        query = attn.to_q(hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
1008
1009
1010

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1011
1012
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1013

1014
1015
        key = attn.to_k(encoder_hidden_states, scale=scale)
        value = attn.to_v(encoder_hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
1016

1017
        inner_dim = key.shape[-1]
Patrick von Platen's avatar
Patrick von Platen committed
1018
        head_dim = inner_dim // attn.heads
1019

Patrick von Platen's avatar
Patrick von Platen committed
1020
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1021

Patrick von Platen's avatar
Patrick von Platen committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
1035
        hidden_states = attn.to_out[0](hidden_states, scale=scale)
Patrick von Platen's avatar
Patrick von Platen committed
1036
1037
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
1038
1039
1040
1041
1042
1043
1044
1045
1046

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1047
1048
1049
        return hidden_states


1050
class CustomDiffusionXFormersAttnProcessor(nn.Module):
1051
    r"""
1052
    Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
1053
1054

    Args:
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    train_kv (`bool`, defaults to `True`):
        Whether to newly train the key and value matrices corresponding to the text features.
    train_q_out (`bool`, defaults to `True`):
        Whether to newly train query matrices corresponding to the latent image features.
    hidden_size (`int`, *optional*, defaults to `None`):
        The hidden size of the attention layer.
    cross_attention_dim (`int`, *optional*, defaults to `None`):
        The number of channels in the `encoder_hidden_states`.
    out_bias (`bool`, defaults to `True`):
        Whether to include the bias parameter in `train_q_out`.
    dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability to use.
    attention_op (`Callable`, *optional*, defaults to `None`):
        The base
        [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
        as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
1071
1072
    """

1073
    def __init__(
1074
        self,
1075
1076
1077
1078
1079
1080
        train_kv=True,
        train_q_out=False,
        hidden_size=None,
        cross_attention_dim=None,
        out_bias=True,
        dropout=0.0,
1081
        attention_op: Optional[Callable] = None,
1082
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1083
        super().__init__()
1084
1085
        self.train_kv = train_kv
        self.train_q_out = train_q_out
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if self.train_q_out:
1109
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
1110
        else:
1111
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
1122
1123
1124
1125
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1159
class SlicedAttnProcessor:
1160
1161
1162
1163
1164
1165
1166
1167
1168
    r"""
    Processor for implementing sliced attention.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

Patrick von Platen's avatar
Patrick von Platen committed
1169
1170
1171
1172
    def __init__(self, slice_size):
        self.slice_size = slice_size

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
1173
1174
1175
1176
1177
1178
1179
1180
        residual = hidden_states

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1181
1182
1183
1184
1185
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

1186
1187
1188
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1189
1190
1191
1192
1193
1194
        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1195
1196
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

1229
1230
1231
1232
1233
1234
1235
1236
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1237
1238
1239
1240
        return hidden_states


class SlicedAttnAddedKVProcessor:
1241
1242
1243
1244
1245
1246
1247
1248
1249
    r"""
    Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

Patrick von Platen's avatar
Patrick von Platen committed
1250
1251
1252
    def __init__(self, slice_size):
        self.slice_size = slice_size

1253
    def __call__(self, attn: "Attention", hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
Patrick von Platen's avatar
Patrick von Platen committed
1254
        residual = hidden_states
1255
1256
1257
1258

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

Patrick von Platen's avatar
Patrick von Platen committed
1259
1260
1261
1262
1263
1264
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

1265
1266
1267
1268
1269
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
class SpatialNorm(nn.Module):
    """
    Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002
    """

    def __init__(
        self,
        f_channels,
        zq_channels,
    ):
        super().__init__()
        self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
        self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
        self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, f, zq):
        f_size = f.shape[-2:]
        zq = F.interpolate(zq, size=f_size, mode="nearest")
        norm_f = self.norm_layer(f)
        new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
        return new_f
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612


## Deprecated
class LoRAAttnProcessor(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism.

    Args:
        hidden_size (`int`, *optional*):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.
        network_alpha (`int`, *optional*):
            Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
    """

    def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, **kwargs):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

    def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnProcessor()
        return attn.processor(attn, hidden_states, *args, **kwargs)


class LoRAAttnProcessor2_0(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism using PyTorch 2.0's memory-efficient scaled dot-product
    attention.

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.
        network_alpha (`int`, *optional*):
            Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
    """

    def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, **kwargs):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

    def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnProcessor2_0()
        return attn.processor(attn, hidden_states, *args, **kwargs)


class LoRAXFormersAttnProcessor(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers.

    Args:
        hidden_size (`int`, *optional*):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
        network_alpha (`int`, *optional*):
            Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.

    """

    def __init__(
        self,
        hidden_size,
        cross_attention_dim,
        rank=4,
        attention_op: Optional[Callable] = None,
        network_alpha=None,
        **kwargs,
    ):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank
        self.attention_op = attention_op

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

    def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = XFormersAttnProcessor()
        return attn.processor(attn, hidden_states, *args, **kwargs)


class LoRAAttnAddedKVProcessor(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text
    encoder.

    Args:
        hidden_size (`int`, *optional*):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.

    """

    def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)

    def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnAddedKVProcessor()
        return attn.processor(attn, hidden_states, *args, **kwargs)


LORA_ATTENTION_PROCESSORS = (
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    LoRAAttnAddedKVProcessor,
)

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
ADDED_KV_ATTENTION_PROCESSORS = (
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
    LoRAAttnAddedKVProcessor,
)

CROSS_ATTENTION_PROCESSORS = (
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
)

1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
AttentionProcessor = Union[
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
    # depraceted
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    LoRAAttnAddedKVProcessor,
]