unet_1d.py 10.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
21
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..utils import BaseOutput
23
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
24
from .modeling_utils import ModelMixin
25
from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


@dataclass
class UNet1DOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`):
            Hidden states output. Output of last layer of model.
    """

    sample: torch.FloatTensor


class UNet1DModel(ModelMixin, ConfigMixin):
    r"""
    UNet1DModel is a 1D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
47
        sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime.
48
49
        in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 2): Number of channels in the output.
50
51
52
        extra_in_channels (`int`, *optional*, defaults to 0):
            Number of additional channels to be added to the input of the first down block. Useful for cases where the
            input data has more channels than what the model is initially designed for.
53
        time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use.
54
        freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for fourier time embedding.
55
56
57
58
59
60
61
62
        flip_sin_to_cos (`bool`, *optional*, defaults to :
            obj:`False`): Whether to flip sin to cos for fourier time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownBlock1D", "DownBlock1DNoSkip", "AttnDownBlock1D")`): Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("UpBlock1D", "UpBlock1DNoSkip", "AttnUpBlock1D")`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(32, 32, 64)`): Tuple of block output channels.
63
64
        mid_block_type (`str`, *optional*, defaults to "UNetMidBlock1D"): block type for middle of UNet.
        out_block_type (`str`, *optional*, defaults to `None`): optional output processing of UNet.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
65
        act_fn (`str`, *optional*, defaults to None): optional activation function in UNet blocks.
66
67
68
69
        norm_num_groups (`int`, *optional*, defaults to 8): group norm member count in UNet blocks.
        layers_per_block (`int`, *optional*, defaults to 1): added number of layers in a UNet block.
        downsample_each_block (`int`, *optional*, defaults to False:
            experimental feature for using a UNet without upsampling.
70
71
72
73
74
75
76
77
78
79
80
81
82
    """

    @register_to_config
    def __init__(
        self,
        sample_size: int = 65536,
        sample_rate: Optional[int] = None,
        in_channels: int = 2,
        out_channels: int = 2,
        extra_in_channels: int = 0,
        time_embedding_type: str = "fourier",
        flip_sin_to_cos: bool = True,
        use_timestep_embedding: bool = False,
83
        freq_shift: float = 0.0,
84
85
        down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
        up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
86
87
        mid_block_type: Tuple[str] = "UNetMidBlock1D",
        out_block_type: str = None,
88
        block_out_channels: Tuple[int] = (32, 32, 64),
89
90
91
92
        act_fn: str = None,
        norm_num_groups: int = 8,
        layers_per_block: int = 1,
        downsample_each_block: bool = False,
93
94
95
96
97
98
99
100
101
102
103
    ):
        super().__init__()
        self.sample_size = sample_size

        # time
        if time_embedding_type == "fourier":
            self.time_proj = GaussianFourierProjection(
                embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = 2 * block_out_channels[0]
        elif time_embedding_type == "positional":
104
105
106
            self.time_proj = Timesteps(
                block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift
            )
107
108
109
110
            timestep_input_dim = block_out_channels[0]

        if use_timestep_embedding:
            time_embed_dim = block_out_channels[0] * 4
111
112
113
114
115
116
            self.time_mlp = TimestepEmbedding(
                in_channels=timestep_input_dim,
                time_embed_dim=time_embed_dim,
                act_fn=act_fn,
                out_dim=block_out_channels[0],
            )
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])
        self.out_block = None

        # down
        output_channel = in_channels
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]

            if i == 0:
                input_channel += extra_in_channels

132
133
            is_final_block = i == len(block_out_channels) - 1

134
135
            down_block = get_down_block(
                down_block_type,
136
                num_layers=layers_per_block,
137
138
                in_channels=input_channel,
                out_channels=output_channel,
139
140
                temb_channels=block_out_channels[0],
                add_downsample=not is_final_block or downsample_each_block,
141
142
143
144
145
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = get_mid_block(
146
            mid_block_type,
147
            in_channels=block_out_channels[-1],
148
149
150
151
152
            mid_channels=block_out_channels[-1],
            out_channels=block_out_channels[-1],
            embed_dim=block_out_channels[0],
            num_layers=layers_per_block,
            add_downsample=downsample_each_block,
153
154
155
156
157
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
158
159
160
161
162
        if out_block_type is None:
            final_upsample_channels = out_channels
        else:
            final_upsample_channels = block_out_channels[0]

163
164
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
165
166
167
168
169
            output_channel = (
                reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels
            )

            is_final_block = i == len(block_out_channels) - 1
170
171
172

            up_block = get_up_block(
                up_block_type,
173
                num_layers=layers_per_block,
174
175
                in_channels=prev_output_channel,
                out_channels=output_channel,
176
177
                temb_channels=block_out_channels[0],
                add_upsample=not is_final_block,
178
179
180
181
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

182
183
184
185
186
187
188
189
190
191
        # out
        num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
        self.out_block = get_out_block(
            out_block_type=out_block_type,
            num_groups_out=num_groups_out,
            embed_dim=block_out_channels[0],
            out_channels=out_channels,
            act_fn=act_fn,
            fc_dim=block_out_channels[-1] // 4,
        )
192
193
194
195
196
197
198
199
200

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        return_dict: bool = True,
    ) -> Union[UNet1DOutput, Tuple]:
        r"""
        Args:
201
            sample (`torch.FloatTensor`): `(batch_size, num_channels, sample_size)` noisy inputs tensor
202
203
204
205
206
207
208
209
210
            timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_1d.UNet1DOutput`] or `tuple`: [`~models.unet_1d.UNet1DOutput`] if `return_dict` is True,
            otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
        """

211
212
213
214
215
216
217
218
219
220
221
222
223
        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        timestep_embed = self.time_proj(timesteps)
        if self.config.use_timestep_embedding:
            timestep_embed = self.time_mlp(timestep_embed)
        else:
            timestep_embed = timestep_embed[..., None]
            timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
224
            timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
225
226
227
228
229
230
231
232

        # 2. down
        down_block_res_samples = ()
        for downsample_block in self.down_blocks:
            sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed)
            down_block_res_samples += res_samples

        # 3. mid
233
234
        if self.mid_block:
            sample = self.mid_block(sample, timestep_embed)
235
236
237
238
239

        # 4. up
        for i, upsample_block in enumerate(self.up_blocks):
            res_samples = down_block_res_samples[-1:]
            down_block_res_samples = down_block_res_samples[:-1]
240
241
242
243
244
            sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed)

        # 5. post-process
        if self.out_block:
            sample = self.out_block(sample, timestep_embed)
245
246
247
248
249

        if not return_dict:
            return (sample,)

        return UNet1DOutput(sample=sample)