transformer_temporal.py 7.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional

import torch
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin


@dataclass
class TransformerTemporalModelOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
29
30
    The output of [`TransformerTemporalModel`].

31
    Args:
Steven Liu's avatar
Steven Liu committed
32
33
        sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input.
34
35
36
37
38
39
40
    """

    sample: torch.FloatTensor


class TransformerTemporalModel(ModelMixin, ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
41
    A Transformer model for video-like data.
42
43
44
45
46

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
Steven Liu's avatar
Steven Liu committed
47
            The number of channels in the input and output (specify if the input is **continuous**).
48
49
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Steven Liu's avatar
Steven Liu committed
50
51
52
53
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
54
        attention_bias (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
55
            Configure if the `TransformerBlock` attention should contain a bias parameter.
56
        double_self_attention (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
57
            Configure if each `TransformerBlock` should contain two self-attention layers.
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        activation_fn: str = "geglu",
        norm_elementwise_affine: bool = True,
        double_self_attention: bool = True,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        self.in_channels = in_channels

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        self.proj_in = nn.Linear(in_channels, inner_dim)

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    double_self_attention=double_self_attention,
                    norm_elementwise_affine=norm_elementwise_affine,
                )
                for d in range(num_layers)
            ]
        )

        self.proj_out = nn.Linear(inner_dim, in_channels)

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        class_labels=None,
        num_frames=1,
        cross_attention_kwargs=None,
        return_dict: bool = True,
    ):
        """
Steven Liu's avatar
Steven Liu committed
118
119
        The [`TransformerTemporal`] forward method.

120
        Args:
Steven Liu's avatar
Steven Liu committed
121
122
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input hidden_states.
123
124
125
126
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.long`, *optional*):
Steven Liu's avatar
Steven Liu committed
127
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
128
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Steven Liu's avatar
Steven Liu committed
129
130
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
131
132
133
134
135
136
            num_frames (`int`, *optional*, defaults to 1):
                The number of frames to be processed per batch. This is used to reshape the hidden states.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
137
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
138
139
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
140
141

        Returns:
Steven Liu's avatar
Steven Liu committed
142
143
144
            [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
                returned, otherwise a `tuple` where the first element is the sample tensor.
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        """
        # 1. Input
        batch_frames, channel, height, width = hidden_states.shape
        batch_size = batch_frames // num_frames

        residual = hidden_states

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
        hidden_states = hidden_states.permute(0, 2, 1, 3, 4)

        hidden_states = self.norm(hidden_states)
        hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)

        hidden_states = self.proj_in(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                timestep=timestep,
                cross_attention_kwargs=cross_attention_kwargs,
                class_labels=class_labels,
            )

        # 3. Output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states[None, None, :]
            .reshape(batch_size, height, width, channel, num_frames)
            .permute(0, 3, 4, 1, 2)
            .contiguous()
        )
        hidden_states = hidden_states.reshape(batch_frames, channel, height, width)

        output = hidden_states + residual

        if not return_dict:
            return (output,)

        return TransformerTemporalModelOutput(sample=output)