scheduling_dpmsolver_multistep_inverse.py 41.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate
Dhruv Nair's avatar
Dhruv Nair committed
25
from ..utils.torch_utils import randn_tensor
26
27
28
29
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
30
31
32
33
34
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
35
36
37
38
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
47
48
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
49
50
51
52

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
53
    if alpha_transform_type == "cosine":
54

YiYi Xu's avatar
YiYi Xu committed
55
56
57
58
59
60
61
62
63
64
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
65
66
67
68
69

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
70
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
71
72
73
74
75
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
    """
76
    `DPMSolverMultistepInverseScheduler` is the reverse scheduler of [`DPMSolverMultistepScheduler`].
77

78
79
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
80
81

    Args:
82
83
84
85
86
87
88
89
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
90
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
91
92
93
94
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
95
            sampling, and `solver_order=3` for unconditional sampling.
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
            Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
            paper, and the `dpmsolver++` type implements the algorithms in the
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
120
121
122
123
        euler_at_final (`bool`, defaults to `False`):
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
            steps, but sometimes may result in blurring.
124
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
125
126
127
128
129
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
130
        variance_type (`str`, *optional*):
131
132
133
134
135
136
137
138
139
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
161
        euler_at_final: bool = False,
162
163
164
        use_karras_sigmas: Optional[bool] = False,
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
165
166
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
167
168
169
170
171
172
173
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
174
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
            if algorithm_type == "deis":
                self.register_to_config(algorithm_type="dpmsolver++")
            else:
                raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")

        if solver_type not in ["midpoint", "heun"]:
            if solver_type in ["logrho", "bh1", "bh2"]:
                self.register_to_config(solver_type="midpoint")
            else:
                raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32).copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
210
        self._step_index = None
211
212
        self.use_karras_sigmas = use_karras_sigmas

213
214
215
216
217
218
219
    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

220
221
    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
        """
222
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
223
224
225

        Args:
            num_inference_steps (`int`):
226
227
228
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
229
230
231
        """
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
232
        clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.lambda_min_clipped).item()
233
234
        self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.noisiest_timestep, num_inference_steps + 1).round()[:-1].copy().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = (self.noisiest_timestep + 1) // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.noisiest_timestep + 1, 0, -step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', "
                "'leading' or 'trailing'."
            )

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
259
260
        log_sigmas = np.log(sigmas)

261
        if self.config.use_karras_sigmas:
262
263
264
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
            timesteps = timesteps.copy().astype(np.int64)
265
266
267
268
269
270
271
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_max = (
                (1 - self.alphas_cumprod[self.noisiest_timestep]) / self.alphas_cumprod[self.noisiest_timestep]
            ) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_max]]).astype(np.float32)
272

273
274
        self.sigmas = torch.from_numpy(sigmas)

275
276
277
278
279
        # when num_inference_steps == num_train_timesteps, we can end up with
        # duplicates in timesteps.
        _, unique_indices = np.unique(timesteps, return_index=True)
        timesteps = timesteps[np.sort(unique_indices)]

280
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
281
282
283
284
285
286
287
288

        self.num_inference_steps = len(timesteps)

        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

289
290
291
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None

292
293
294
295
296
297
298
299
300
301
302
303
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
304
        batch_size, channels, *remaining_dims = sample.shape
305
306
307
308
309

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
310
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
311
312
313
314
315
316
317
318
319
320

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

321
        sample = sample.reshape(batch_size, channels, *remaining_dims)
322
323
324
325
326
327
328
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
329
        log_sigma = np.log(np.maximum(sigma, 1e-10))
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

350
351
352
353
354
355
356
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
    def convert_model_output(
373
374
375
376
377
        self,
        model_output: torch.FloatTensor,
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
378
379
    ) -> torch.FloatTensor:
        """
380
381
382
383
384
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>
385

386
387
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.
388

389
        </Tip>
390
391

        Args:
392
393
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
394
            sample (`torch.FloatTensor`):
395
                A current instance of a sample created by the diffusion process.
396
397

        Returns:
398
399
            `torch.FloatTensor`:
                The converted model output.
400
        """
401
402
403
404
405
406
407
408
409
410
411
412
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
413
414
415
416
417
418
419

        # DPM-Solver++ needs to solve an integral of the data prediction model.
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
            if self.config.prediction_type == "epsilon":
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    model_output = model_output[:, :3]
420
421
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
422
423
424
425
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
426
427
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
                )

            if self.config.thresholding:
                x0_pred = self._threshold_sample(x0_pred)

            return x0_pred

        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            if self.config.prediction_type == "epsilon":
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
            elif self.config.prediction_type == "sample":
449
450
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
451
452
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
453
454
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
455
456
457
458
459
460
461
462
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
                )

            if self.config.thresholding:
463
464
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
465
466
467
468
469
470
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

471
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
472
473
474
    def dpm_solver_first_order_update(
        self,
        model_output: torch.FloatTensor,
475
476
        *args,
        sample: torch.FloatTensor = None,
477
        noise: Optional[torch.FloatTensor] = None,
478
        **kwargs,
479
480
    ) -> torch.FloatTensor:
        """
481
        One step for the first-order DPMSolver (equivalent to DDIM).
482
483

        Args:
484
485
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
486
            sample (`torch.FloatTensor`):
487
                A current instance of a sample created by the diffusion process.
488
489

        Returns:
490
491
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
492
        """
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

520
521
522
523
524
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
525
526
527
528
529
530
531
532
533
534
535
536
537
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            x_t = (
                (alpha_t / alpha_s) * sample
                - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
                + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
538
539
540
            )
        return x_t

541
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
542
543
544
    def multistep_dpm_solver_second_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
545
546
        *args,
        sample: torch.FloatTensor = None,
547
        noise: Optional[torch.FloatTensor] = None,
548
        **kwargs,
549
550
    ) -> torch.FloatTensor:
        """
551
        One step for the second-order multistep DPMSolver.
552
553
554

        Args:
            model_output_list (`List[torch.FloatTensor]`):
555
                The direct outputs from learned diffusion model at current and latter timesteps.
556
            sample (`torch.FloatTensor`):
557
                A current instance of a sample created by the diffusion process.
558
559

        Returns:
560
561
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
562
        """
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

598
        m0, m1 = model_output_list[-1], model_output_list[-2]
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * (torch.exp(h) - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
663
664
665
666
667
668
        return x_t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
    def multistep_dpm_solver_third_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
669
670
671
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
672
673
    ) -> torch.FloatTensor:
        """
674
        One step for the third-order multistep DPMSolver.
675
676
677

        Args:
            model_output_list (`List[torch.FloatTensor]`):
678
                The direct outputs from learned diffusion model at current and latter timesteps.
679
            sample (`torch.FloatTensor`):
680
                A current instance of a sample created by diffusion process.
681
682

        Returns:
683
684
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
685
        """
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
713
        )
714
715
716
717
718
719
720
721
722
723
724
725
726

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (alpha_t / alpha_s0) * sample
                - (sigma_t * (torch.exp(h) - 1.0)) * D0
                - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
            )
        return x_t

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

        self._step_index = step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.step
772
773
774
775
776
777
778
779
780
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        generator=None,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
781
782
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DPMSolver.
783
784

        Args:
785
786
787
788
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
789
            sample (`torch.FloatTensor`):
790
                A current instance of a sample created by the diffusion process.
791
792
            generator (`torch.Generator`, *optional*):
                A random number generator.
793
794
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
795
796

        Returns:
797
798
799
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
800
801
802
803
804
805
806

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

807
808
809
        if self.step_index is None:
            self._init_step_index(timestep)

810
811
812
        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
            self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15)
813
814
        )
        lower_order_second = (
815
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
816
817
        )

818
        model_output = self.convert_model_output(model_output, sample=sample)
819
820
821
822
823
824
825
826
827
828
829
830
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
831
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
832
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
833
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
834
        else:
835
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
836
837
838
839

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

840
841
842
        # upon completion increase step index by one
        self._step_index += 1

843
844
845
846
847
848
849
850
851
852
853
854
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
855
856
            sample (`torch.FloatTensor`):
                The input sample.
857
858

        Returns:
859
860
            `torch.FloatTensor`:
                A scaled input sample.
861
862
863
        """
        return sample

864
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
865
866
867
868
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
869
        timesteps: torch.IntTensor,
870
    ) -> torch.FloatTensor:
871
872
873
874
875
876
877
878
879
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
880

881
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
882

883
884
885
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
886

887
888
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
889
890
891
892
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps