unet_2d_blocks_flax.py 14.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
15
16
17

import flax.linen as nn
import jax.numpy as jnp

Will Berman's avatar
Will Berman committed
18
from .attention_flax import FlaxTransformer2DModel
19
20
21
22
from .resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D


class FlaxCrossAttnDownBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
23
24
25
26
27
28
29
30
31
32
33
34
35
    r"""
    Cross Attention 2D Downsizing block - original architecture from Unet transformers:
    https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
36
        num_attention_heads (:obj:`int`, *optional*, defaults to 1):
Younes Belkada's avatar
Younes Belkada committed
37
38
39
            Number of attention heads of each spatial transformer block
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
40
41
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
42
43
44
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
45
46
47
48
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
49
    num_attention_heads: int = 1
50
    add_downsample: bool = True
51
52
    use_linear_projection: bool = False
    only_cross_attention: bool = False
53
    use_memory_efficient_attention: bool = False
54
    dtype: jnp.dtype = jnp.float32
Pedro Cuenca's avatar
Pedro Cuenca committed
55
    transformer_layers_per_block: int = 1
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

    def setup(self):
        resnets = []
        attentions = []

        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

Will Berman's avatar
Will Berman committed
72
            attn_block = FlaxTransformer2DModel(
73
                in_channels=self.out_channels,
74
75
                n_heads=self.num_attention_heads,
                d_head=self.out_channels // self.num_attention_heads,
Pedro Cuenca's avatar
Pedro Cuenca committed
76
                depth=self.transformer_layers_per_block,
77
78
                use_linear_projection=self.use_linear_projection,
                only_cross_attention=self.only_cross_attention,
79
                use_memory_efficient_attention=self.use_memory_efficient_attention,
80
81
82
83
84
85
86
87
                dtype=self.dtype,
            )
            attentions.append(attn_block)

        self.resnets = resnets
        self.attentions = attentions

        if self.add_downsample:
88
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
89
90
91
92
93
94
95
96
97
98

    def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
            output_states += (hidden_states,)

        if self.add_downsample:
99
            hidden_states = self.downsamplers_0(hidden_states)
100
101
102
103
104
105
            output_states += (hidden_states,)

        return hidden_states, output_states


class FlaxDownBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    r"""
    Flax 2D downsizing block

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    add_downsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []

        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)
        self.resnets = resnets

        if self.add_downsample:
146
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
147
148
149
150
151
152
153
154
155

    def __call__(self, hidden_states, temb, deterministic=True):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            output_states += (hidden_states,)

        if self.add_downsample:
156
            hidden_states = self.downsamplers_0(hidden_states)
157
158
159
160
161
162
            output_states += (hidden_states,)

        return hidden_states, output_states


class FlaxCrossAttnUpBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
163
164
165
166
167
168
169
170
171
172
173
174
175
    r"""
    Cross Attention 2D Upsampling block - original architecture from Unet transformers:
    https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
176
        num_attention_heads (:obj:`int`, *optional*, defaults to 1):
Younes Belkada's avatar
Younes Belkada committed
177
178
179
            Number of attention heads of each spatial transformer block
        add_upsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add upsampling layer before each final output
180
181
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
182
183
184
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
185
186
187
188
189
    in_channels: int
    out_channels: int
    prev_output_channel: int
    dropout: float = 0.0
    num_layers: int = 1
190
    num_attention_heads: int = 1
191
    add_upsample: bool = True
192
193
    use_linear_projection: bool = False
    only_cross_attention: bool = False
194
    use_memory_efficient_attention: bool = False
195
    dtype: jnp.dtype = jnp.float32
Pedro Cuenca's avatar
Pedro Cuenca committed
196
    transformer_layers_per_block: int = 1
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

    def setup(self):
        resnets = []
        attentions = []

        for i in range(self.num_layers):
            res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
            resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=resnet_in_channels + res_skip_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

Will Berman's avatar
Will Berman committed
214
            attn_block = FlaxTransformer2DModel(
215
                in_channels=self.out_channels,
216
217
                n_heads=self.num_attention_heads,
                d_head=self.out_channels // self.num_attention_heads,
Pedro Cuenca's avatar
Pedro Cuenca committed
218
                depth=self.transformer_layers_per_block,
219
220
                use_linear_projection=self.use_linear_projection,
                only_cross_attention=self.only_cross_attention,
221
                use_memory_efficient_attention=self.use_memory_efficient_attention,
222
223
224
225
226
227
228
229
                dtype=self.dtype,
            )
            attentions.append(attn_block)

        self.resnets = resnets
        self.attentions = attentions

        if self.add_upsample:
230
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
231
232
233
234
235
236
237
238
239
240
241
242

    def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)

            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)

        if self.add_upsample:
243
            hidden_states = self.upsamplers_0(hidden_states)
244
245
246
247
248

        return hidden_states


class FlaxUpBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    r"""
    Flax 2D upsampling block

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        prev_output_channel (:obj:`int`):
            Output channels from the previous block
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    in_channels: int
    out_channels: int
    prev_output_channel: int
    dropout: float = 0.0
    num_layers: int = 1
    add_upsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []

        for i in range(self.num_layers):
            res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
            resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=resnet_in_channels + res_skip_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets

        if self.add_upsample:
294
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
295
296
297
298
299
300
301
302
303
304
305

    def __call__(self, hidden_states, res_hidden_states_tuple, temb, deterministic=True):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)

            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)

        if self.add_upsample:
306
            hidden_states = self.upsamplers_0(hidden_states)
307
308
309
310
311

        return hidden_states


class FlaxUNetMidBlock2DCrossAttn(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
312
313
314
315
316
317
318
319
320
321
    r"""
    Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
322
        num_attention_heads (:obj:`int`, *optional*, defaults to 1):
Younes Belkada's avatar
Younes Belkada committed
323
            Number of attention heads of each spatial transformer block
324
325
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
326
327
328
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
329
330
331
    in_channels: int
    dropout: float = 0.0
    num_layers: int = 1
332
    num_attention_heads: int = 1
333
    use_linear_projection: bool = False
334
    use_memory_efficient_attention: bool = False
335
    dtype: jnp.dtype = jnp.float32
Pedro Cuenca's avatar
Pedro Cuenca committed
336
    transformer_layers_per_block: int = 1
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

    def setup(self):
        # there is always at least one resnet
        resnets = [
            FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
        ]

        attentions = []

        for _ in range(self.num_layers):
Will Berman's avatar
Will Berman committed
352
            attn_block = FlaxTransformer2DModel(
353
                in_channels=self.in_channels,
354
355
                n_heads=self.num_attention_heads,
                d_head=self.in_channels // self.num_attention_heads,
Pedro Cuenca's avatar
Pedro Cuenca committed
356
                depth=self.transformer_layers_per_block,
357
                use_linear_projection=self.use_linear_projection,
358
                use_memory_efficient_attention=self.use_memory_efficient_attention,
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                dtype=self.dtype,
            )
            attentions.append(attn_block)

            res_block = FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets
        self.attentions = attentions

    def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)

        return hidden_states