test_examples.py 6.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright 2022 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import logging
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from typing import List

from accelerate.utils import write_basic_config
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41

logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()


# These utils relate to ensuring the right error message is received when running scripts
class SubprocessCallException(Exception):
    pass


def run_command(command: List[str], return_stdout=False):
    """
    Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
Yuta Hayashibe's avatar
Yuta Hayashibe committed
42
    if an error occurred while running `command`
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    """
    try:
        output = subprocess.check_output(command, stderr=subprocess.STDOUT)
        if return_stdout:
            if hasattr(output, "decode"):
                output = output.decode("utf-8")
            return output
    except subprocess.CalledProcessError as e:
        raise SubprocessCallException(
            f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
        ) from e


stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class ExamplesTestsAccelerate(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls._tmpdir = tempfile.mkdtemp()
        cls.configPath = os.path.join(cls._tmpdir, "default_config.yml")

        write_basic_config(save_location=cls.configPath)
        cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath]

    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()
        shutil.rmtree(cls._tmpdir)

    def test_train_unconditional(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
79
80
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
81
82
                --resolution 64
                --output_dir {tmpdir}
83
                --train_batch_size 2
84
85
                --num_epochs 1
                --gradient_accumulation_steps 1
86
                --ddpm_num_inference_steps 2
87
88
89
90
91
92
93
94
95
96
97
98
99
                --learning_rate 1e-3
                --lr_warmup_steps 5
                """.split()

            run_command(self._launch_args + test_args, return_stdout=True)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_textual_inversion(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/textual_inversion/textual_inversion.py
100
                --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
Patrick von Platen's avatar
Patrick von Platen committed
101
                --train_data_dir docs/source/en/imgs
102
103
                --learnable_property object
                --placeholder_token <cat-toy>
104
                --initializer_token a
105
106
                --resolution 64
                --train_batch_size 1
107
108
                --gradient_accumulation_steps 1
                --max_train_steps 2
109
110
111
112
113
114
115
116
117
118
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.bin")))
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

    def test_dreambooth(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/dreambooth/train_dreambooth.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
                --instance_data_dir docs/source/en/imgs
                --instance_prompt photo
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_text_to_image(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))