test_if_inpainting.py 5.01 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
Patrick von Platen's avatar
Patrick von Platen committed
17
18
19
20
21
22
import random
import unittest

import torch

from diffusers import IFInpaintingPipeline
23
from diffusers.models.attention_processor import AttnAddedKVProcessor
24
from diffusers.utils.import_utils import is_xformers_available
25
26
27
28
29
30
31
32
33
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_numpy,
    require_accelerator,
    require_torch_gpu,
    skip_mps,
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38

from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
39
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from . import IFPipelineTesterMixin


@skip_mps
class IFInpaintingPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFInpaintingPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        mask_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
68
            "output_type": "np",
Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
        }

        return inputs

73
74
75
76
77
78
79
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)

Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

83
84
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
85
86
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
87
        super().test_save_load_float16(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
88
89
90
91
92
93
94
95
96
97
98

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )
99
100
101
102
103


@slow
@require_torch_gpu
class IFInpaintingPipelineSlowTests(unittest.TestCase):
104
105
106
107
108
109
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_if_inpainting(self):
        pipe = IFInpaintingPipeline.from_pretrained(
            "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16
        )
        pipe.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe.enable_model_cpu_offload()

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
        mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device)

        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            prompt="anime prompts",
            image=image,
            mask_image=mask_image,
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 12 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy"
        )
        assert_mean_pixel_difference(image, expected_image)
        pipe.remove_all_hooks()