test_models_unet_2d.py 12.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
21
import math
import unittest

import torch

22
from diffusers import UNet2DModel
Dhruv Nair's avatar
Dhruv Nair committed
23
24
25
26
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
Arsalan's avatar
Arsalan committed
27
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
28
29
30
31
    slow,
    torch_all_close,
    torch_device,
)
32

33
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
34
35


Patrick von Platen's avatar
Patrick von Platen committed
36
logger = logging.get_logger(__name__)
37
38

enable_full_determinism()
39
40


41
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
42
    model_class = UNet2DModel
43
    main_input_name = "sample"
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
66
67
            "block_out_channels": (4, 8),
            "norm_num_groups": 2,
68
69
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
70
            "attention_head_dim": 3,
71
72
73
74
75
76
77
78
            "out_channels": 3,
            "in_channels": 3,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

79
80
81
82
    def test_mid_block_attn_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["add_attention"] = True
83
        init_dict["attn_norm_num_groups"] = 4
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        self.assertIsNotNone(
            model.mid_block.attentions[0].group_norm, "Mid block Attention group norm should exist but does not."
        )
        self.assertEqual(
            model.mid_block.attentions[0].group_norm.num_groups,
            init_dict["attn_norm_num_groups"],
            "Mid block Attention group norm does not have the expected number of groups.",
        )

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    def test_gradient_checkpointing_is_applied(self):
        expected_set = {
            "AttnUpBlock2D",
            "AttnDownBlock2D",
            "UNetMidBlock2D",
            "UpBlock2D",
            "DownBlock2D",
        }

        # NOTE: unlike UNet2DConditionModel, UNet2DModel does not currently support tuples for `attention_head_dim`
        attention_head_dim = 8
        block_out_channels = (16, 32)

        super().test_gradient_checkpointing_is_applied(
            expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
        )

125

126
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
127
    model_class = UNet2DModel
128
    main_input_name = "sample"
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
170
        image = model(**self.dummy_input).sample
171
172
173

        assert image is not None, "Make sure output is not None"

Arsalan's avatar
Arsalan committed
174
    @require_torch_accelerator
175
    def test_from_pretrained_accelerate(self):
176
        model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
177
178
179
180
181
        model.to(torch_device)
        image = model(**self.dummy_input).sample

        assert image is not None, "Make sure output is not None"

Arsalan's avatar
Arsalan committed
182
    @require_torch_accelerator
183
    def test_from_pretrained_accelerate_wont_change_results(self):
184
        # by default model loading will use accelerate as `low_cpu_mem_usage=True`
185
        model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        model_accelerate.to(torch_device)
        model_accelerate.eval()

        noise = torch.randn(
            1,
            model_accelerate.config.in_channels,
            model_accelerate.config.sample_size,
            model_accelerate.config.sample_size,
            generator=torch.manual_seed(0),
        )
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)

        arr_accelerate = model_accelerate(noise, time_step)["sample"]

        # two models don't need to stay in the device at the same time
        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

206
        model_normal_load, _ = UNet2DModel.from_pretrained(
207
            "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
208
        )
209
210
211
212
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        arr_normal_load = model_normal_load(noise, time_step)["sample"]

213
        assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
214

215
216
217
    def test_output_pretrained(self):
        model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
        model.eval()
218
        model.to(torch_device)
219

220
221
222
223
224
225
226
        noise = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
227
228
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
229
230

        with torch.no_grad():
231
            output = model(noise, time_step).sample
232

233
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
234
235
236
237
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

238
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
239

240
241
242
243
244
245
246
247
248
249
250
    def test_gradient_checkpointing_is_applied(self):
        expected_set = {"DownBlock2D", "UNetMidBlock2D", "UpBlock2D"}

        # NOTE: unlike UNet2DConditionModel, UNet2DModel does not currently support tuples for `attention_head_dim`
        attention_head_dim = 32
        block_out_channels = (32, 64)

        super().test_gradient_checkpointing_is_applied(
            expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
        )

251

252
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
253
    model_class = UNet2DModel
254
    main_input_name = "sample"
255
256
257
258
259
260
261

    @property
    def dummy_input(self, sizes=(32, 32)):
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
262
        time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "layers_per_block": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "norm_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
            ],
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
            ],
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

300
    @slow
301
    def test_from_pretrained_hub(self):
302
        model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
303
304
305
306
307
308
309
310
311
312
313
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)

        assert image is not None, "Make sure output is not None"

314
    @slow
315
    def test_output_pretrained_ve_mid(self):
316
        model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
317
318
319
320
321
322
323
324
325
326
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
327
            output = model(noise, time_step).sample
328
329
330

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
331
        expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056])
332
333
        # fmt: on

334
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
335
336
337
338
339
340
341
342
343
344
345
346
347

    def test_output_pretrained_ve_large(self):
        model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
348
            output = model(noise, time_step).sample
349
350
351
352
353
354

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
        # fmt: on

355
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
356
357
358
359

    def test_forward_with_norm_groups(self):
        # not required for this model
        pass
360
361
362
363
364
365
366
367
368
369
370
371
372
373

    def test_gradient_checkpointing_is_applied(self):
        expected_set = {
            "UNetMidBlock2D",
        }

        block_out_channels = (32, 64, 64, 64)

        super().test_gradient_checkpointing_is_applied(
            expected_set=expected_set, block_out_channels=block_out_channels
        )

    def test_effective_gradient_checkpointing(self):
        super().test_effective_gradient_checkpointing(skip={"time_proj.weight"})