test_models_vae.py 36.3 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

Will Berman's avatar
Will Berman committed
19
import numpy as np
20
import torch
21
from parameterized import parameterized
22

Will Berman's avatar
Will Berman committed
23
24
25
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
Suraj Patil's avatar
Suraj Patil committed
26
    AutoencoderKLTemporalDecoder,
Will Berman's avatar
Will Berman committed
27
28
29
30
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    StableDiffusionPipeline,
)
31
from diffusers.utils.import_utils import is_xformers_available
Will Berman's avatar
Will Berman committed
32
from diffusers.utils.loading_utils import load_image
Dhruv Nair's avatar
Dhruv Nair committed
33
34
35
36
37
38
39
40
41
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_hf_numpy,
    require_torch_gpu,
    slow,
    torch_all_close,
    torch_device,
)
Will Berman's avatar
Will Berman committed
42
from diffusers.utils.torch_utils import randn_tensor
43

44
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
45
46


47
enable_full_determinism()
48
49


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
    block_out_channels = block_out_channels or [32, 64]
    norm_num_groups = norm_num_groups or 32
    init_dict = {
        "block_out_channels": block_out_channels,
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
    }
    return init_dict


def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
    block_out_channels = block_out_channels or [32, 64]
    norm_num_groups = norm_num_groups or 32
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "down_block_out_channels": block_out_channels,
        "layers_per_down_block": 1,
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "up_block_out_channels": block_out_channels,
        "layers_per_up_block": 1,
        "act_fn": "silu",
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
        "sample_size": 32,
        "scaling_factor": 0.18215,
    }
    return init_dict


def get_autoencoder_tiny_config(block_out_channels=None):
    block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "encoder_block_out_channels": block_out_channels,
        "decoder_block_out_channels": block_out_channels,
        "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
        "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
    }
    return init_dict


def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None):
    block_out_channels = block_out_channels or [32, 64]
    norm_num_groups = norm_num_groups or 32
    return {
        "encoder_block_out_channels": block_out_channels,
        "encoder_in_channels": 3,
        "encoder_out_channels": 4,
        "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "decoder_add_attention": False,
        "decoder_block_out_channels": block_out_channels,
        "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels),
        "decoder_downsample_padding": 1,
        "decoder_in_channels": 7,
        "decoder_layers_per_block": 1,
        "decoder_norm_eps": 1e-05,
        "decoder_norm_num_groups": norm_num_groups,
        "encoder_norm_num_groups": norm_num_groups,
        "decoder_num_train_timesteps": 1024,
        "decoder_out_channels": 6,
        "decoder_resnet_time_scale_shift": "scale_shift",
        "decoder_time_embedding_type": "learned",
        "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels),
        "scaling_factor": 1,
        "latent_channels": 4,
    }


126
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
127
    model_class = AutoencoderKL
128
129
    main_input_name = "sample"
    base_precision = 1e-2
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
150
        init_dict = get_autoencoder_kl_config()
151
152
153
154
155
156
157
158
159
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model = model.to(torch_device)
        model.eval()

216
        if torch_device == "mps":
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        image = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
        image = image.to(torch_device)
        with torch.no_grad():
            output = model(image, sample_posterior=True, generator=generator).sample

        output_slice = output[0, -1, -3:, -3:].flatten().cpu()

        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
        if torch_device == "mps":
            expected_output_slice = torch.tensor(
                [
                    -4.0078e-01,
                    -3.8323e-04,
                    -1.2681e-01,
                    -1.1462e-01,
                    2.0095e-01,
                    1.0893e-01,
                    -8.8247e-02,
                    -3.0361e-01,
                    -9.8644e-03,
                ]
            )
        elif torch_device == "cpu":
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
252
253
254
255
256
257
258
259
260
261
262
                [
                    -0.1352,
                    0.0878,
                    0.0419,
                    -0.0818,
                    -0.1069,
                    0.0688,
                    -0.1458,
                    -0.4446,
                    -0.0026,
                ]
263
264
265
            )
        else:
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
266
267
268
269
270
271
272
273
274
275
276
                [
                    -0.2421,
                    0.4642,
                    0.2507,
                    -0.0438,
                    0.0682,
                    0.3160,
                    -0.2018,
                    -0.0727,
                    0.2485,
                ]
277
278
            )

279
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
280
281


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AsymmetricAutoencoderKL
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        mask = torch.ones((batch_size, 1) + sizes).to(torch_device)

        return {"sample": image, "mask": mask}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
307
        init_dict = get_asym_autoencoder_kl_config()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
308
309
310
311
312
313
314
315
316
317
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_forward_with_norm_groups(self):
        pass


318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderTiny
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
342
        init_dict = get_autoencoder_tiny_config()
343
344
345
346
347
348
349
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_outputs_equivalence(self):
        pass


Will Berman's avatar
Will Berman committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase):
    model_class = ConsistencyDecoderVAE
    main_input_name = "sample"
    base_precision = 1e-2
    forward_requires_fresh_args = True

    def inputs_dict(self, seed=None):
        generator = torch.Generator("cpu")
        if seed is not None:
            generator.manual_seed(0)
        image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device))

        return {"sample": image, "generator": generator}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    @property
    def init_dict(self):
374
        return get_consistency_vae_config()
Will Berman's avatar
Will Berman committed
375
376
377
378
379
380
381
382
383
384
385
386
387

    def prepare_init_args_and_inputs_for_common(self):
        return self.init_dict, self.inputs_dict()

    @unittest.skip
    def test_training(self):
        ...

    @unittest.skip
    def test_ema_training(self):
        ...


Suraj Patil's avatar
Suraj Patil committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
class AutoncoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderKLTemporalDecoder
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 3
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        num_frames = 3

        return {"sample": image, "num_frames": num_frames}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64],
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "latent_channels": 4,
            "layers_per_block": 2,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue

            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))


475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
        model.to(torch_device).eval()
        return model

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    @parameterized.expand(
        [
            [(1, 4, 73, 97), (1, 3, 584, 776)],
            [(1, 4, 97, 73), (1, 3, 776, 584)],
            [(1, 4, 49, 65), (1, 3, 392, 520)],
            [(1, 4, 65, 49), (1, 3, 520, 392)],
            [(1, 4, 49, 49), (1, 3, 392, 392)],
        ]
    )
    def test_tae_tiling(self, in_shape, out_shape):
        model = self.get_sd_vae_model()
        model.enable_tiling()
        with torch.no_grad():
            zeros = torch.zeros(in_shape).to(torch_device)
            dec = model.decode(zeros).sample
            assert dec.shape == out_shape

515
516
517
518
519
520
521
522
523
524
    def test_stable_diffusion(self):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed=33)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
525
        expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
526
527
528

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    @parameterized.expand([(True,), (False,)])
    def test_tae_roundtrip(self, enable_tiling):
        # load the autoencoder
        model = self.get_sd_vae_model()
        if enable_tiling:
            model.enable_tiling()

        # make a black image with a white square in the middle,
        # which is large enough to split across multiple tiles
        image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
        image[..., 256:768, 256:768] = 1.0

        # round-trip the image through the autoencoder
        with torch.no_grad():
            sample = model(image).sample

        # the autoencoder reconstruction should match original image, sorta
        def downscale(x):
            return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)

        assert torch_all_close(downscale(sample), downscale(image), atol=0.125)

551

552
553
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
Patrick von Platen's avatar
hot fix  
Patrick von Platen committed
554
555
556
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

557
558
559
560
561
562
563
564
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
565
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
566
567
568
569
570
571
572
        return image

    def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderKL.from_pretrained(
573
574
575
576
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
            revision=revision,
577
        )
578
        model.to(torch_device)
579
580
581
582

        return model

    def get_generator(self, seed=0):
583
        if torch_device == "mps":
584
            return torch.manual_seed(seed)
585
586
587
588
589
        return torch.Generator(device=torch_device).manual_seed(seed)

    @parameterized.expand(
        [
            # fmt: off
590
591
592
593
594
595
596
597
598
599
            [
                33,
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
600
601
602
            # fmt: on
        ]
    )
603
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
604
605
606
607
608
609
610
611
612
613
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
614
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
615

616
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
            [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_stable_diffusion_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        image = self.get_sd_image(seed, fp16=True)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
640
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
641
642
643
644

    @parameterized.expand(
        [
            # fmt: off
645
646
647
648
649
650
651
652
653
654
            [
                33,
                [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
655
656
657
            # fmt: on
        ]
    )
658
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
659
660
661
662
663
664
665
666
667
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
668
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
669

670
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
            [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
693
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
694
695
696
697
698
699
700
701
702

    @parameterized.expand(
        [
            # fmt: off
            [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
            [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
            # fmt: on
        ]
    )
703
    @require_torch_gpu
704
705
706
707
708
709
710
711
712
713
714
715
    def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
716
        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
717

718
    @parameterized.expand([(13,), (16,), (27,)])
719
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
720
721
722
723
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
    def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-1)

739
    @parameterized.expand([(13,), (16,), (37,)])
740
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
741
742
743
744
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-2)

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

782
        tolerance = 3e-3 if torch_device != "mps" else 1e-2
783
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

    def test_stable_diffusion_model_local(self):
        model_id = "stabilityai/sd-vae-ft-mse"
        model_1 = AutoencoderKL.from_pretrained(model_id).to(torch_device)

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
        model_2 = AutoencoderKL.from_single_file(url).to(torch_device)
        image = self.get_sd_image(33)

        with torch.no_grad():
            sample_1 = model_1(image).sample
            sample_2 = model_2(image).sample

        assert sample_1.shape == sample_2.shape

        output_slice_1 = sample_1[-1, -2:, -2:, :2].flatten().float().cpu()
        output_slice_2 = sample_2[-1, -2:, -2:, :2].flatten().float().cpu()

        assert torch_all_close(output_slice_1, output_slice_2, atol=3e-3)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841


@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
        revision = "main"
        torch_dtype = torch.float32

        model = AsymmetricAutoencoderKL.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            revision=revision,
        )
        model.to(torch_device).eval()

        return model

    def get_generator(self, seed=0):
        if torch_device == "mps":
            return torch.manual_seed(seed)
        return torch.Generator(device=torch_device).manual_seed(seed)

    @parameterized.expand(
        [
            # fmt: off
842
843
844
845
846
847
848
849
850
851
            [
                33,
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
            ],
            [
                47,
                [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529],
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
873
874
875
876
877
878
879
880
881
882
            [
                33,
                [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097],
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
            ],
            [
                47,
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
            # fmt: on
        ]
    )
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

    @parameterized.expand(
        [
            # fmt: off
903
            [13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
            [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)

    @parameterized.expand([(13,), (16,), (37,)])
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
925
926
927
928
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=5e-2)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        tolerance = 3e-3 if torch_device != "mps" else 1e-2
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
Will Berman's avatar
Will Berman committed
968
969
970
971
972
973
974
975
976
977


@slow
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

978
    @torch.no_grad()
Will Berman's avatar
Will Berman committed
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    def test_encode_decode(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[
            None, :, :, :
        ].cuda()

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None)
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1006
1007
1008
1009
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_encode_decode_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = (
            torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :]
            .half()
            .cuda()
        )

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1039
1040
            [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
1050
1051
1052
1053
            "runwayml/stable-diffusion-v1-5",
            torch_dtype=torch.float16,
            vae=vae,
            safety_checker=None,
Will Berman's avatar
Will Berman committed
1054
1055
1056
1057
        )
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1058
1059
1060
1061
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1062
1063
1064
1065
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1066
1067
            [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1068
1069
1070
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)