autoencoder_kl.py 19.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Dict, Optional, Tuple, Union
15
16
17
18
19

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
20
from ..loaders import FromOriginalVAEMixin
Dhruv Nair's avatar
Dhruv Nair committed
21
from ..utils.accelerate_utils import apply_forward_hook
22
23
24
25
26
27
28
from .attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
Suraj Patil's avatar
Suraj Patil committed
29
from .modeling_outputs import AutoencoderKLOutput
30
31
32
33
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder


34
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
Steven Liu's avatar
Steven Liu committed
35
36
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
37

Steven Liu's avatar
Steven Liu committed
38
39
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
40
41
42
43

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
44
45
46
47
48
49
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
50
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
51
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
52
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
53
54
55
56
57
58
59
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
60
61
62
63
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
64
65
    """

66
67
    _supports_gradient_checkpointing = True

68
69
70
71
72
73
74
75
76
77
78
79
80
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
81
        scaling_factor: float = 0.18215,
82
        force_upcast: float = True,
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
        )

        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
111
112
113
114
115
116
117
118
119
120
121

        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
122
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
123
124
        self.tile_overlap_factor = 0.25

125
126
127
128
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (Encoder, Decoder)):
            module.gradient_checkpointing = value

129
130
131
    def enable_tiling(self, use_tiling: bool = True):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
Steven Liu's avatar
Steven Liu committed
132
133
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
134
135
136
137
138
        """
        self.use_tiling = use_tiling

    def disable_tiling(self):
        r"""
Steven Liu's avatar
Steven Liu committed
139
140
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
141
142
143
144
145
146
147
148
149
150
151
152
        """
        self.enable_tiling(False)

    def enable_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
153
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
154
155
        decoding in one step.
        """
156
157
        self.use_slicing = False

158
159
160
161
162
163
164
165
166
167
168
169
    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
170
171
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
172
173
174
175
176
177
178
179
180
181
182
183

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
184
185
186
    def set_attn_processor(
        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
    ):
187
        r"""
Steven Liu's avatar
Steven Liu committed
188
189
        Sets the attention processor to use to compute attention.

190
        Parameters:
Steven Liu's avatar
Steven Liu committed
191
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
192
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
193
194
195
196
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
197
198
199
200
201
202
203
204
205
206
207
208
209

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
210
                    module.set_processor(processor, _remove_lora=_remove_lora)
211
                else:
212
                    module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
213
214
215
216
217
218
219
220
221
222
223
224

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
225
226
227
228
229
230
231
232
233
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

234
        self.set_attn_processor(processor, _remove_lora=True)
235

236
    @apply_forward_hook
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def encode(
        self, x: torch.FloatTensor, return_dict: bool = True
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
            x (`torch.FloatTensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded images. If `return_dict` is True, a
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
252
253
254
        if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
            return self.tiled_encode(x, return_dict=return_dict)

Patrick von Platen's avatar
Patrick von Platen committed
255
256
257
258
259
260
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self.encoder(x)

261
262
263
264
265
266
267
268
269
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
270
271
272
        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, return_dict=return_dict)

273
274
275
276
277
278
279
280
        z = self.post_quant_conv(z)
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

281
    @apply_forward_hook
Will Berman's avatar
Will Berman committed
282
283
284
    def decode(
        self, z: torch.FloatTensor, return_dict: bool = True, generator=None
    ) -> Union[DecoderOutput, torch.FloatTensor]:
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        """
        Decode a batch of images.

        Args:
            z (`torch.FloatTensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.

        """
299
300
301
302
303
304
305
306
307
308
309
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z).sample

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

310
    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
311
312
        blend_extent = min(a.shape[2], b.shape[2], blend_extent)
        for y in range(blend_extent):
313
314
315
            b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
        return b

316
    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
317
318
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for x in range(blend_extent):
319
320
321
322
323
            b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
        r"""Encode a batch of images using a tiled encoder.
324

325
        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
Steven Liu's avatar
Steven Liu committed
326
327
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
328
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
Steven Liu's avatar
Steven Liu committed
329
330
331
332
333
334
335
336
337
338
339
        output, but they should be much less noticeable.

        Args:
            x (`torch.FloatTensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
                `tuple` is returned.
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        """
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                tile = self.quant_conv(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        moments = torch.cat(result_rows, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
Steven Liu's avatar
Steven Liu committed
377
378
        r"""
        Decode a batch of images using a tiled decoder.
379

380
        Args:
Steven Liu's avatar
Steven Liu committed
381
382
383
384
385
386
387
388
            z (`torch.FloatTensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[2], overlap_size):
            row = []
            for j in range(0, z.shape[3], overlap_size):
                tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
                tile = self.post_quant_conv(tile)
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        dec = torch.cat(result_rows, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    def forward(
        self,
        sample: torch.FloatTensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""
        Args:
            sample (`torch.FloatTensor`): Input sample.
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)