wan.md 19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->

# Wan

17
18
19
20
<div class="flex flex-wrap space-x-1">
  <img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>

21
22
23
24
[Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.

<!-- TODO(aryan): update abstract once paper is out -->

25
26
27
28
29
30
31
32
33
34
35
36
## Generating Videos with Wan 2.1

We will first need to install some addtional dependencies.

```shell
pip install -u ftfy imageio-ffmpeg imageio
```

### Text to Video Generation

The following example requires 11GB VRAM to run and uses the smaller `Wan-AI/Wan2.1-T2V-1.3B-Diffusers` model. You can switch it out
for the larger `Wan2.1-I2V-14B-720P-Diffusers` or `Wan-AI/Wan2.1-I2V-14B-480P-Diffusers` if you have at least 35GB VRAM available.
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
```python
from diffusers import WanPipeline
from diffusers.utils import export_to_video

# Available models: Wan-AI/Wan2.1-I2V-14B-720P-Diffusers or Wan-AI/Wan2.1-I2V-14B-480P-Diffusers
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"

pipe = WanPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()

prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33

frames = pipe(prompt=prompt, negative_prompt=negative_prompt, num_frames=num_frames).frames[0]
export_to_video(frames, "wan-t2v.mp4", fps=16)
```
55

56
57
<Tip>
You can improve the quality of the generated video by running the decoding step in full precision.
58
59
</Tip>

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
```python
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video

model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"

vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)

# replace this with pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()

prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33

frames = pipe(prompt=prompt, num_frames=num_frames).frames[0]
export_to_video(frames, "wan-t2v.mp4", fps=16)
```

### Image to Video Generation

The Image to Video pipeline requires loading the `AutoencoderKLWan` and the `CLIPVisionModel` components in full precision. The following example will need at least
35GB of VRAM to run.

```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel

# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
    model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
    model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)

# replace this with pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()

image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)

max_area = 480 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))

prompt = (
    "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
    "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"

num_frames = 33

output = pipe(
    image=image,
    prompt=prompt,
    negative_prompt=negative_prompt,
    height=height,
    width=width,
    num_frames=num_frames,
    guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```

## Memory Optimizations for Wan 2.1

Base inference with the large 14B Wan 2.1 models can take up to 35GB of VRAM when generating videos at 720p resolution. We'll outline a few memory optimizations we can apply to reduce the VRAM required to run the model.

We'll use `Wan-AI/Wan2.1-I2V-14B-720P-Diffusers` model in these examples to demonstrate the memory savings, but the techniques are applicable to all model checkpoints.

### Group Offloading the Transformer and UMT5 Text Encoder

Find more information about group offloading [here](../optimization/memory.md)

#### Block Level Group Offloading

We can reduce our VRAM requirements by applying group offloading to the larger model components of the pipeline; the `WanTransformer3DModel` and `UMT5EncoderModel`. Group offloading will break up the individual modules of a model and offload/onload them onto your GPU as needed during inference. In this example, we'll apply `block_level` offloading, which will group the modules in a model into blocks of size `num_blocks_per_group` and offload/onload them to GPU. Moving to between CPU and GPU does add latency to the inference process. You can trade off between latency and memory savings by increasing or decreasing the `num_blocks_per_group`.

The following example will now only require 14GB of VRAM to run, but will take approximately 30 minutes to generate a video.

```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel

# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
    model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)

onload_device = torch.device("cuda")
offload_device = torch.device("cpu")

apply_group_offloading(text_encoder,
    onload_device=onload_device,
    offload_device=offload_device,
    offload_type="block_level",
    num_blocks_per_group=4
)

transformer.enable_group_offload(
    onload_device=onload_device,
    offload_device=offload_device,
    offload_type="block_level",
    num_blocks_per_group=4,
)
pipe = WanImageToVideoPipeline.from_pretrained(
    model_id,
    vae=vae,
    transformer=transformer,
    text_encoder=text_encoder,
    image_encoder=image_encoder,
    torch_dtype=torch.bfloat16
)
# Since we've offloaded the larger models alrady, we can move the rest of the model components to GPU
pipe.to("cuda")

image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)

max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))

prompt = (
    "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
    "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"

num_frames = 33

output = pipe(
    image=image,
    prompt=prompt,
    negative_prompt=negative_prompt,
    height=height,
    width=width,
    num_frames=num_frames,
    guidance_scale=5.0,
).frames[0]

export_to_video(output, "wan-i2v.mp4", fps=16)
```

#### Block Level Group Offloading with CUDA Streams

We can speed up group offloading inference, by enabling the use of [CUDA streams](https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html). However, using CUDA streams requires moving the model parameters into pinned memory. This allocation is handled by Pytorch under the hood, and can result in a significant spike in CPU RAM usage. Please consider this option if your CPU RAM is atleast 2X the size of the model you are group offloading.

In the following example we will use CUDA streams when group offloading the `WanTransformer3DModel`. When testing on an A100, this example will require 14GB of VRAM, 52GB of CPU RAM, but will generate a video in approximately 9 minutes.

```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel

# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
    model_id, subfolder="image_encoder", torch_dtype=torch.float32
)

text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)

onload_device = torch.device("cuda")
offload_device = torch.device("cpu")

apply_group_offloading(text_encoder,
    onload_device=onload_device,
    offload_device=offload_device,
    offload_type="block_level",
    num_blocks_per_group=4
)

transformer.enable_group_offload(
    onload_device=onload_device,
    offload_device=offload_device,
    offload_type="leaf_level",
    use_stream=True
)
pipe = WanImageToVideoPipeline.from_pretrained(
    model_id,
    vae=vae,
    transformer=transformer,
    text_encoder=text_encoder,
    image_encoder=image_encoder,
    torch_dtype=torch.bfloat16
)
# Since we've offloaded the larger models alrady, we can move the rest of the model components to GPU
pipe.to("cuda")

image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)

max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))

prompt = (
    "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
    "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"

num_frames = 33

output = pipe(
    image=image,
    prompt=prompt,
    negative_prompt=negative_prompt,
    height=height,
    width=width,
    num_frames=num_frames,
    guidance_scale=5.0,
).frames[0]

export_to_video(output, "wan-i2v.mp4", fps=16)
```

### Applying Layerwise Casting to the Transformer

Find more information about layerwise casting [here](../optimization/memory.md)

In this example, we will model offloading with layerwise casting. Layerwise casting will downcast each layer's weights to `torch.float8_e4m3fn`, temporarily upcast to `torch.bfloat16` during the forward pass of the layer, then revert to `torch.float8_e4m3fn` afterward. This approach reduces memory requirements by approximately 50% while introducing a minor quality reduction in the generated video due to the precision trade-off.

This example will require 20GB of VRAM.

```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionMode

model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
    model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)

transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)

pipe = WanImageToVideoPipeline.from_pretrained(
    model_id,
    vae=vae,
    transformer=transformer,
    text_encoder=text_encoder,
    image_encoder=image_encoder,
    torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg")

max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
    "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
    "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
num_frames = 33

output = pipe(
    image=image,
    prompt=prompt,
    negative_prompt=negative_prompt,
    height=height,
    width=width,
    num_frames=num_frames,
    num_inference_steps=50,
    guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```

### Using a Custom Scheduler
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

Wan can be used with many different schedulers, each with their own benefits regarding speed and generation quality. By default, Wan uses the `UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)` scheduler. You can use a different scheduler as follows:

```python
from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler, WanPipeline

scheduler_a = FlowMatchEulerDiscreteScheduler(shift=5.0)
scheduler_b = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=4.0)

pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", scheduler=<CUSTOM_SCHEDULER_HERE>)

# or,
pipe.scheduler = <CUSTOM_SCHEDULER_HERE>
```

391
## Using Single File Loading with Wan 2.1
392

393
394
The `WanTransformer3DModel` and `AutoencoderKLWan` models support loading checkpoints in their original format via the `from_single_file` loading
method.
395
396
397
398
399
400
401
402
403
404
405

```python
import torch
from diffusers import WanPipeline, WanTransformer3DModel

ckpt_path = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors"
transformer = WanTransformer3DModel.from_single_file(ckpt_path, torch_dtype=torch.bfloat16)

pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", transformer=transformer)
```

406
407
408
409
410
## Recommendations for Inference:
- Keep `AutencoderKLWan` in `torch.float32` for better decoding quality.
- `num_frames` should satisfy the following constraint: `(num_frames - 1) % 4 == 0`
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution videos, try higher values (between `7.0` and `12.0`). The default value is `3.0` for Wan.

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
## WanPipeline

[[autodoc]] WanPipeline
  - all
  - __call__

## WanImageToVideoPipeline

[[autodoc]] WanImageToVideoPipeline
  - all
  - __call__

## WanPipelineOutput

[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput