autoencoder_kl_hunyuanvideo15.py 37.2 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
# Copyright 2025 The Hunyuan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint

from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput, DiagonalGaussianDistribution


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class HunyuanVideo15CausalConv3d(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int, int]] = 3,
        stride: Union[int, Tuple[int, int, int]] = 1,
        padding: Union[int, Tuple[int, int, int]] = 0,
        dilation: Union[int, Tuple[int, int, int]] = 1,
        bias: bool = True,
        pad_mode: str = "replicate",
    ) -> None:
        super().__init__()

        kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size

        self.pad_mode = pad_mode
        self.time_causal_padding = (
            kernel_size[0] // 2,
            kernel_size[0] // 2,
            kernel_size[1] // 2,
            kernel_size[1] // 2,
            kernel_size[2] - 1,
            0,
        )

        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode)
        return self.conv(hidden_states)


class HunyuanVideo15RMS_norm(nn.Module):
    r"""
    A custom RMS normalization layer.

    Args:
        dim (int): The number of dimensions to normalize over.
        channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
            Default is True.
        images (bool, optional): Whether the input represents image data. Default is True.
        bias (bool, optional): Whether to include a learnable bias term. Default is False.
    """

    def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0

    def forward(self, x):
        return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias


class HunyuanVideo15AttnBlock(nn.Module):
    def __init__(self, in_channels: int):
        super().__init__()
        self.in_channels = in_channels

        self.norm = HunyuanVideo15RMS_norm(in_channels, images=False)

        self.to_q = nn.Conv3d(in_channels, in_channels, kernel_size=1)
        self.to_k = nn.Conv3d(in_channels, in_channels, kernel_size=1)
        self.to_v = nn.Conv3d(in_channels, in_channels, kernel_size=1)
        self.proj_out = nn.Conv3d(in_channels, in_channels, kernel_size=1)

    @staticmethod
    def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None):
        """Prepare a causal attention mask for 3D videos.

        Args:
            n_frame (int): Number of frames (temporal length).
            n_hw (int): Product of height and width.
            dtype: Desired mask dtype.
            device: Device for the mask.
            batch_size (int, optional): If set, expands for batch.

        Returns:
            torch.Tensor: Causal attention mask.
        """
        seq_len = n_frame * n_hw
        mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
        for i in range(seq_len):
            i_frame = i // n_hw
            mask[i, : (i_frame + 1) * n_hw] = 0
        if batch_size is not None:
            mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
        return mask

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        identity = x

        x = self.norm(x)

        query = self.to_q(x)
        key = self.to_k(x)
        value = self.to_v(x)

        batch_size, channels, frames, height, width = query.shape

        query = query.reshape(batch_size, channels, frames * height * width).permute(0, 2, 1).unsqueeze(1).contiguous()
        key = key.reshape(batch_size, channels, frames * height * width).permute(0, 2, 1).unsqueeze(1).contiguous()
        value = value.reshape(batch_size, channels, frames * height * width).permute(0, 2, 1).unsqueeze(1).contiguous()

        attention_mask = self.prepare_causal_attention_mask(
            frames, height * width, query.dtype, query.device, batch_size=batch_size
        )

        x = nn.functional.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)

        # batch_size, 1, frames * height * width, channels

        x = x.squeeze(1).reshape(batch_size, frames, height, width, channels).permute(0, 4, 1, 2, 3)
        x = self.proj_out(x)

        return x + identity


class HunyuanVideo15Upsample(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, add_temporal_upsample: bool = True):
        super().__init__()
        factor = 2 * 2 * 2 if add_temporal_upsample else 1 * 2 * 2
        self.conv = HunyuanVideo15CausalConv3d(in_channels, out_channels * factor, kernel_size=3)

        self.add_temporal_upsample = add_temporal_upsample
        self.repeats = factor * out_channels // in_channels

    @staticmethod
    def _dcae_upsample_rearrange(tensor, r1=1, r2=2, r3=2):
        """
        Convert (b, r1*r2*r3*c, f, h, w) -> (b, c, r1*f, r2*h, r3*w)

        Args:
            tensor: Input tensor of shape (b, r1*r2*r3*c, f, h, w)
            r1: temporal upsampling factor
            r2: height upsampling factor
            r3: width upsampling factor
        """
        b, packed_c, f, h, w = tensor.shape
        factor = r1 * r2 * r3
        c = packed_c // factor

        tensor = tensor.view(b, r1, r2, r3, c, f, h, w)
        tensor = tensor.permute(0, 4, 5, 1, 6, 2, 7, 3)
        return tensor.reshape(b, c, f * r1, h * r2, w * r3)

    def forward(self, x: torch.Tensor):
        r1 = 2 if self.add_temporal_upsample else 1
        h = self.conv(x)
        if self.add_temporal_upsample:
            h_first = h[:, :, :1, :, :]
            h_first = self._dcae_upsample_rearrange(h_first, r1=1, r2=2, r3=2)
            h_first = h_first[:, : h_first.shape[1] // 2]
            h_next = h[:, :, 1:, :, :]
            h_next = self._dcae_upsample_rearrange(h_next, r1=r1, r2=2, r3=2)
            h = torch.cat([h_first, h_next], dim=2)

            # shortcut computation
            x_first = x[:, :, :1, :, :]
            x_first = self._dcae_upsample_rearrange(x_first, r1=1, r2=2, r3=2)
            x_first = x_first.repeat_interleave(repeats=self.repeats // 2, dim=1)

            x_next = x[:, :, 1:, :, :]
            x_next = self._dcae_upsample_rearrange(x_next, r1=r1, r2=2, r3=2)
            x_next = x_next.repeat_interleave(repeats=self.repeats, dim=1)
            shortcut = torch.cat([x_first, x_next], dim=2)

        else:
            h = self._dcae_upsample_rearrange(h, r1=r1, r2=2, r3=2)
            shortcut = x.repeat_interleave(repeats=self.repeats, dim=1)
            shortcut = self._dcae_upsample_rearrange(shortcut, r1=r1, r2=2, r3=2)
        return h + shortcut


class HunyuanVideo15Downsample(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, add_temporal_downsample: bool = True):
        super().__init__()
        factor = 2 * 2 * 2 if add_temporal_downsample else 1 * 2 * 2
        self.conv = HunyuanVideo15CausalConv3d(in_channels, out_channels // factor, kernel_size=3)

        self.add_temporal_downsample = add_temporal_downsample
        self.group_size = factor * in_channels // out_channels

    @staticmethod
    def _dcae_downsample_rearrange(tensor, r1=1, r2=2, r3=2):
        """
        Convert (b, c, r1*f, r2*h, r3*w) -> (b, r1*r2*r3*c, f, h, w)

        This packs spatial/temporal dimensions into channels (opposite of upsample)
        """
        b, c, packed_f, packed_h, packed_w = tensor.shape
        f, h, w = packed_f // r1, packed_h // r2, packed_w // r3

        tensor = tensor.view(b, c, f, r1, h, r2, w, r3)
        tensor = tensor.permute(0, 3, 5, 7, 1, 2, 4, 6)
        return tensor.reshape(b, r1 * r2 * r3 * c, f, h, w)

    def forward(self, x: torch.Tensor):
        r1 = 2 if self.add_temporal_downsample else 1
        h = self.conv(x)
        if self.add_temporal_downsample:
            h_first = h[:, :, :1, :, :]
            h_first = self._dcae_downsample_rearrange(h_first, r1=1, r2=2, r3=2)
            h_first = torch.cat([h_first, h_first], dim=1)
            h_next = h[:, :, 1:, :, :]
            h_next = self._dcae_downsample_rearrange(h_next, r1=r1, r2=2, r3=2)
            h = torch.cat([h_first, h_next], dim=2)

            # shortcut computation
            x_first = x[:, :, :1, :, :]
            x_first = self._dcae_downsample_rearrange(x_first, r1=1, r2=2, r3=2)
            B, C, T, H, W = x_first.shape
            x_first = x_first.view(B, h.shape[1], self.group_size // 2, T, H, W).mean(dim=2)
            x_next = x[:, :, 1:, :, :]
            x_next = self._dcae_downsample_rearrange(x_next, r1=r1, r2=2, r3=2)
            B, C, T, H, W = x_next.shape
            x_next = x_next.view(B, h.shape[1], self.group_size, T, H, W).mean(dim=2)
            shortcut = torch.cat([x_first, x_next], dim=2)
        else:
            h = self._dcae_downsample_rearrange(h, r1=r1, r2=2, r3=2)
            shortcut = self._dcae_downsample_rearrange(x, r1=r1, r2=2, r3=2)
            B, C, T, H, W = shortcut.shape
            shortcut = shortcut.view(B, h.shape[1], self.group_size, T, H, W).mean(dim=2)

        return h + shortcut


class HunyuanVideo15ResnetBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        non_linearity: str = "swish",
    ) -> None:
        super().__init__()
        out_channels = out_channels or in_channels

        self.nonlinearity = get_activation(non_linearity)

        self.norm1 = HunyuanVideo15RMS_norm(in_channels, images=False)
        self.conv1 = HunyuanVideo15CausalConv3d(in_channels, out_channels, kernel_size=3)

        self.norm2 = HunyuanVideo15RMS_norm(out_channels, images=False)
        self.conv2 = HunyuanVideo15CausalConv3d(out_channels, out_channels, kernel_size=3)

        self.conv_shortcut = None
        if in_channels != out_channels:
            self.conv_shortcut = nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        residual = hidden_states

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

        hidden_states = self.norm2(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            residual = self.conv_shortcut(residual)

        return hidden_states + residual


class HunyuanVideo15MidBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        num_layers: int = 1,
        add_attention: bool = True,
    ) -> None:
        super().__init__()
        self.add_attention = add_attention

        # There is always at least one resnet
        resnets = [
            HunyuanVideo15ResnetBlock(
                in_channels=in_channels,
                out_channels=in_channels,
            )
        ]
        attentions = []

        for _ in range(num_layers):
            if self.add_attention:
                attentions.append(HunyuanVideo15AttnBlock(in_channels))
            else:
                attentions.append(None)

            resnets.append(
                HunyuanVideo15ResnetBlock(
                    in_channels=in_channels,
                    out_channels=in_channels,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.resnets[0](hidden_states)

        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            if attn is not None:
                hidden_states = attn(hidden_states)
            hidden_states = resnet(hidden_states)

        return hidden_states


class HunyuanVideo15DownBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_layers: int = 1,
        downsample_out_channels: Optional[int] = None,
        add_temporal_downsample: int = True,
    ) -> None:
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                HunyuanVideo15ResnetBlock(
                    in_channels=in_channels,
                    out_channels=out_channels,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if downsample_out_channels is not None:
            self.downsamplers = nn.ModuleList(
                [
                    HunyuanVideo15Downsample(
                        out_channels,
                        out_channels=downsample_out_channels,
                        add_temporal_downsample=add_temporal_downsample,
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


class HunyuanVideo15UpBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_layers: int = 1,
        upsample_out_channels: Optional[int] = None,
        add_temporal_upsample: bool = True,
    ) -> None:
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
                HunyuanVideo15ResnetBlock(
                    in_channels=input_channels,
                    out_channels=out_channels,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if upsample_out_channels is not None:
            self.upsamplers = nn.ModuleList(
                [
                    HunyuanVideo15Upsample(
                        out_channels,
                        out_channels=upsample_out_channels,
                        add_temporal_upsample=add_temporal_upsample,
                    )
                ]
            )
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        if torch.is_grad_enabled() and self.gradient_checkpointing:
            for resnet in self.resnets:
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states)

        else:
            for resnet in self.resnets:
                hidden_states = resnet(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class HunyuanVideo15Encoder3D(nn.Module):
    r"""
    3D vae encoder for HunyuanImageRefiner.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 64,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024, 1024),
        layers_per_block: int = 2,
        temporal_compression_ratio: int = 4,
        spatial_compression_ratio: int = 16,
        downsample_match_channel: bool = True,
    ) -> None:
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.group_size = block_out_channels[-1] // self.out_channels

        self.conv_in = HunyuanVideo15CausalConv3d(in_channels, block_out_channels[0], kernel_size=3)
        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        input_channel = block_out_channels[0]
        for i in range(len(block_out_channels)):
            add_spatial_downsample = i < np.log2(spatial_compression_ratio)
            output_channel = block_out_channels[i]
            if not add_spatial_downsample:
                down_block = HunyuanVideo15DownBlock3D(
                    num_layers=layers_per_block,
                    in_channels=input_channel,
                    out_channels=output_channel,
                    downsample_out_channels=None,
                    add_temporal_downsample=False,
                )
                input_channel = output_channel
            else:
                add_temporal_downsample = i >= np.log2(spatial_compression_ratio // temporal_compression_ratio)
                downsample_out_channels = block_out_channels[i + 1] if downsample_match_channel else output_channel
                down_block = HunyuanVideo15DownBlock3D(
                    num_layers=layers_per_block,
                    in_channels=input_channel,
                    out_channels=output_channel,
                    downsample_out_channels=downsample_out_channels,
                    add_temporal_downsample=add_temporal_downsample,
                )
                input_channel = downsample_out_channels

            self.down_blocks.append(down_block)

        self.mid_block = HunyuanVideo15MidBlock(in_channels=block_out_channels[-1])

        self.norm_out = HunyuanVideo15RMS_norm(block_out_channels[-1], images=False)
        self.conv_act = nn.SiLU()
        self.conv_out = HunyuanVideo15CausalConv3d(block_out_channels[-1], out_channels, kernel_size=3)

        self.gradient_checkpointing = False

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.conv_in(hidden_states)

        if torch.is_grad_enabled() and self.gradient_checkpointing:
            for down_block in self.down_blocks:
                hidden_states = self._gradient_checkpointing_func(down_block, hidden_states)

            hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)
        else:
            for down_block in self.down_blocks:
                hidden_states = down_block(hidden_states)

            hidden_states = self.mid_block(hidden_states)

        batch_size, _, frame, height, width = hidden_states.shape
        short_cut = hidden_states.view(batch_size, -1, self.group_size, frame, height, width).mean(dim=2)

        hidden_states = self.norm_out(hidden_states)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        hidden_states += short_cut

        return hidden_states


class HunyuanVideo15Decoder3D(nn.Module):
    r"""
    Causal decoder for 3D video-like data used for HunyuanImage-1.5 Refiner.
    """

    def __init__(
        self,
        in_channels: int = 32,
        out_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (1024, 1024, 512, 256, 128),
        layers_per_block: int = 2,
        spatial_compression_ratio: int = 16,
        temporal_compression_ratio: int = 4,
        upsample_match_channel: bool = True,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.repeat = block_out_channels[0] // self.in_channels

        self.conv_in = HunyuanVideo15CausalConv3d(self.in_channels, block_out_channels[0], kernel_size=3)
        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = HunyuanVideo15MidBlock(in_channels=block_out_channels[0])

        # up
        input_channel = block_out_channels[0]
        for i in range(len(block_out_channels)):
            output_channel = block_out_channels[i]

            add_spatial_upsample = i < np.log2(spatial_compression_ratio)
            add_temporal_upsample = i < np.log2(temporal_compression_ratio)
            if add_spatial_upsample or add_temporal_upsample:
                upsample_out_channels = block_out_channels[i + 1] if upsample_match_channel else output_channel
                up_block = HunyuanVideo15UpBlock3D(
                    num_layers=self.layers_per_block + 1,
                    in_channels=input_channel,
                    out_channels=output_channel,
                    upsample_out_channels=upsample_out_channels,
                    add_temporal_upsample=add_temporal_upsample,
                )
                input_channel = upsample_out_channels
            else:
                up_block = HunyuanVideo15UpBlock3D(
                    num_layers=self.layers_per_block + 1,
                    in_channels=input_channel,
                    out_channels=output_channel,
                    upsample_out_channels=None,
                    add_temporal_upsample=False,
                )
                input_channel = output_channel

            self.up_blocks.append(up_block)

        # out
        self.norm_out = HunyuanVideo15RMS_norm(block_out_channels[-1], images=False)
        self.conv_act = nn.SiLU()
        self.conv_out = HunyuanVideo15CausalConv3d(block_out_channels[-1], out_channels, kernel_size=3)

        self.gradient_checkpointing = False

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.conv_in(hidden_states) + hidden_states.repeat_interleave(repeats=self.repeat, dim=1)

        if torch.is_grad_enabled() and self.gradient_checkpointing:
            hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)

            for up_block in self.up_blocks:
                hidden_states = self._gradient_checkpointing_func(up_block, hidden_states)
        else:
            hidden_states = self.mid_block(hidden_states)

            for up_block in self.up_blocks:
                hidden_states = up_block(hidden_states)

        # post-process
        hidden_states = self.norm_out(hidden_states)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)
        return hidden_states


class AutoencoderKLHunyuanVideo15(ModelMixin, ConfigMixin):
    r"""
    A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used for
    HunyuanVideo-1.5.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        latent_channels: int = 32,
        block_out_channels: Tuple[int] = (128, 256, 512, 1024, 1024),
        layers_per_block: int = 2,
        spatial_compression_ratio: int = 16,
        temporal_compression_ratio: int = 4,
        downsample_match_channel: bool = True,
        upsample_match_channel: bool = True,
        scaling_factor: float = 1.03682,
    ) -> None:
        super().__init__()

        self.encoder = HunyuanVideo15Encoder3D(
            in_channels=in_channels,
            out_channels=latent_channels * 2,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            temporal_compression_ratio=temporal_compression_ratio,
            spatial_compression_ratio=spatial_compression_ratio,
            downsample_match_channel=downsample_match_channel,
        )

        self.decoder = HunyuanVideo15Decoder3D(
            in_channels=latent_channels,
            out_channels=out_channels,
            block_out_channels=list(reversed(block_out_channels)),
            layers_per_block=layers_per_block,
            temporal_compression_ratio=temporal_compression_ratio,
            spatial_compression_ratio=spatial_compression_ratio,
            upsample_match_channel=upsample_match_channel,
        )

        self.spatial_compression_ratio = spatial_compression_ratio
        self.temporal_compression_ratio = temporal_compression_ratio

        # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
        # to perform decoding of a single video latent at a time.
        self.use_slicing = False

        # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
        # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
        # intermediate tiles together, the memory requirement can be lowered.
        self.use_tiling = False

        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 256
        self.tile_sample_min_width = 256

        # The minimal tile height and width in latent space
        self.tile_latent_min_height = self.tile_sample_min_height // spatial_compression_ratio
        self.tile_latent_min_width = self.tile_sample_min_width // spatial_compression_ratio
        self.tile_overlap_factor = 0.25

    def enable_tiling(
        self,
        tile_sample_min_height: Optional[int] = None,
        tile_sample_min_width: Optional[int] = None,
        tile_latent_min_height: Optional[int] = None,
        tile_latent_min_width: Optional[int] = None,
        tile_overlap_factor: Optional[float] = None,
    ) -> None:
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.

        Args:
            tile_sample_min_height (`int`, *optional*):
                The minimum height required for a sample to be separated into tiles across the height dimension.
            tile_sample_min_width (`int`, *optional*):
                The minimum width required for a sample to be separated into tiles across the width dimension.
            tile_latent_min_height (`int`, *optional*):
                The minimum height required for a latent to be separated into tiles across the height dimension.
            tile_latent_min_width (`int`, *optional*):
                The minimum width required for a latent to be separated into tiles across the width dimension.
        """
        self.use_tiling = True
        self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
        self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
        self.tile_latent_min_height = tile_latent_min_height or self.tile_latent_min_height
        self.tile_latent_min_width = tile_latent_min_width or self.tile_latent_min_width
        self.tile_overlap_factor = tile_overlap_factor or self.tile_overlap_factor

    def disable_tiling(self) -> None:
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        _, _, _, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
            return self.tiled_encode(x)

        x = self.encoder(x)
        return x

    @apply_forward_hook
    def encode(
        self, x: torch.Tensor, return_dict: bool = True
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        r"""
        Encode a batch of images into latents.

        Args:
            x (`torch.Tensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded videos. If `return_dict` is True, a
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self._encode(x)

        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)
        return AutoencoderKLOutput(latent_dist=posterior)

    def _decode(self, z: torch.Tensor) -> torch.Tensor:
        _, _, _, height, width = z.shape

        if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
            return self.tiled_decode(z)

        dec = self.decoder(z)

        return dec

    @apply_forward_hook
    def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
        r"""
        Decode a batch of images.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z)

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

    def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
        for x in range(blend_extent):
            b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
                x / blend_extent
            )
        return b

    def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        Args:
            x (`torch.Tensor`): Input batch of videos.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """
        _, _, _, height, width = x.shape

        overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor))  # 256 * (1 - 0.25) = 192
        overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor))  # 256 * (1 - 0.25) = 192
        blend_height = int(self.tile_latent_min_height * self.tile_overlap_factor)  # 8 * 0.25 = 2
        blend_width = int(self.tile_latent_min_width * self.tile_overlap_factor)  # 8 * 0.25 = 2
        row_limit_height = self.tile_latent_min_height - blend_height  # 8 - 2 = 6
        row_limit_width = self.tile_latent_min_width - blend_width  # 8 - 2 = 6

        rows = []
        for i in range(0, height, overlap_height):
            row = []
            for j in range(0, width, overlap_width):
                tile = x[
                    :,
                    :,
                    :,
                    i : i + self.tile_sample_min_height,
                    j : j + self.tile_sample_min_width,
                ]
                tile = self.encoder(tile)
                row.append(tile)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
            result_rows.append(torch.cat(result_row, dim=-1))
        moments = torch.cat(result_rows, dim=-2)

        return moments

    def tiled_decode(self, z: torch.Tensor) -> torch.Tensor:
        r"""
        Decode a batch of images using a tiled decoder.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """

        _, _, _, height, width = z.shape

        overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor))  # 8 * (1 - 0.25) = 6
        overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor))  # 8 * (1 - 0.25) = 6
        blend_height = int(self.tile_sample_min_height * self.tile_overlap_factor)  # 256 * 0.25 = 64
        blend_width = int(self.tile_sample_min_width * self.tile_overlap_factor)  # 256 * 0.25 = 64
        row_limit_height = self.tile_sample_min_height - blend_height  # 256 - 64 = 192
        row_limit_width = self.tile_sample_min_width - blend_width  # 256 - 64 = 192

        rows = []
        for i in range(0, height, overlap_height):
            row = []
            for j in range(0, width, overlap_width):
                tile = z[
                    :,
                    :,
                    :,
                    i : i + self.tile_latent_min_height,
                    j : j + self.tile_latent_min_width,
                ]
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
            result_rows.append(torch.cat(result_row, dim=-1))
        dec = torch.cat(result_rows, dim=-2)

        return dec

    def forward(
        self,
        sample: torch.Tensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[DecoderOutput, torch.Tensor]:
        r"""
        Args:
            sample (`torch.Tensor`): Input sample.
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z, return_dict=return_dict)
        return dec