"megatron/git@developer.sourcefind.cn:OpenDAS/megatron-lm.git" did not exist on "b57265556ef59d39464114237c33dbe6f2b732b7"
attention_dispatch.py 73.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import functools
import inspect
import math
19
from dataclasses import dataclass
20
from enum import Enum
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
22
23

import torch
24
25
26
27


if torch.distributed.is_available():
    import torch.distributed._functional_collectives as funcol
28
29
30

from ..utils import (
    get_logger,
31
32
    is_aiter_available,
    is_aiter_version,
33
34
35
    is_flash_attn_3_available,
    is_flash_attn_available,
    is_flash_attn_version,
36
    is_kernels_available,
37
38
39
40
41
42
43
44
45
    is_sageattention_available,
    is_sageattention_version,
    is_torch_npu_available,
    is_torch_version,
    is_torch_xla_available,
    is_torch_xla_version,
    is_xformers_available,
    is_xformers_version,
)
46
from ..utils.constants import DIFFUSERS_ATTN_BACKEND, DIFFUSERS_ATTN_CHECKS
47
48


49
50
51
if TYPE_CHECKING:
    from ._modeling_parallel import ParallelConfig

52
_REQUIRED_FLASH_VERSION = "2.6.3"
53
_REQUIRED_AITER_VERSION = "0.1.5"
54
55
56
57
58
59
60
_REQUIRED_SAGE_VERSION = "2.1.1"
_REQUIRED_FLEX_VERSION = "2.5.0"
_REQUIRED_XLA_VERSION = "2.2"
_REQUIRED_XFORMERS_VERSION = "0.0.29"

_CAN_USE_FLASH_ATTN = is_flash_attn_available() and is_flash_attn_version(">=", _REQUIRED_FLASH_VERSION)
_CAN_USE_FLASH_ATTN_3 = is_flash_attn_3_available()
61
_CAN_USE_AITER_ATTN = is_aiter_available() and is_aiter_version(">=", _REQUIRED_AITER_VERSION)
62
63
64
65
66
67
68
69
_CAN_USE_SAGE_ATTN = is_sageattention_available() and is_sageattention_version(">=", _REQUIRED_SAGE_VERSION)
_CAN_USE_FLEX_ATTN = is_torch_version(">=", _REQUIRED_FLEX_VERSION)
_CAN_USE_NPU_ATTN = is_torch_npu_available()
_CAN_USE_XLA_ATTN = is_torch_xla_available() and is_torch_xla_version(">=", _REQUIRED_XLA_VERSION)
_CAN_USE_XFORMERS_ATTN = is_xformers_available() and is_xformers_version(">=", _REQUIRED_XFORMERS_VERSION)


if _CAN_USE_FLASH_ATTN:
70
    from flash_attn import flash_attn_func, flash_attn_varlen_func
71
    from flash_attn.flash_attn_interface import _wrapped_flash_attn_backward, _wrapped_flash_attn_forward
72
73
74
else:
    flash_attn_func = None
    flash_attn_varlen_func = None
75
76
    _wrapped_flash_attn_backward = None
    _wrapped_flash_attn_forward = None
77
78


79
if _CAN_USE_FLASH_ATTN_3:
80
81
82
83
84
85
    from flash_attn_interface import flash_attn_func as flash_attn_3_func
    from flash_attn_interface import flash_attn_varlen_func as flash_attn_3_varlen_func
else:
    flash_attn_3_func = None
    flash_attn_3_varlen_func = None

86
87
88
89
90
if _CAN_USE_AITER_ATTN:
    from aiter import flash_attn_func as aiter_flash_attn_func
else:
    aiter_flash_attn_func = None

91
if _CAN_USE_SAGE_ATTN:
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    from sageattention import (
        sageattn,
        sageattn_qk_int8_pv_fp8_cuda,
        sageattn_qk_int8_pv_fp8_cuda_sm90,
        sageattn_qk_int8_pv_fp16_cuda,
        sageattn_qk_int8_pv_fp16_triton,
        sageattn_varlen,
    )
else:
    sageattn = None
    sageattn_qk_int8_pv_fp16_cuda = None
    sageattn_qk_int8_pv_fp16_triton = None
    sageattn_qk_int8_pv_fp8_cuda = None
    sageattn_qk_int8_pv_fp8_cuda_sm90 = None
    sageattn_varlen = None


109
if _CAN_USE_FLEX_ATTN:
110
111
112
113
114
115
    # We cannot import the flex_attention function from the package directly because it is expected (from the
    # pytorch documentation) that the user may compile it. If we import directly, we will not have access to the
    # compiled function.
    import torch.nn.attention.flex_attention as flex_attention


116
if _CAN_USE_NPU_ATTN:
117
118
119
120
121
    from torch_npu import npu_fusion_attention
else:
    npu_fusion_attention = None


122
if _CAN_USE_XLA_ATTN:
123
124
125
126
127
    from torch_xla.experimental.custom_kernel import flash_attention as xla_flash_attention
else:
    xla_flash_attention = None


128
if _CAN_USE_XFORMERS_ATTN:
129
130
131
132
    import xformers.ops as xops
else:
    xops = None

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Version guard for PyTorch compatibility - custom_op was added in PyTorch 2.4
if torch.__version__ >= "2.4.0":
    _custom_op = torch.library.custom_op
    _register_fake = torch.library.register_fake
else:

    def custom_op_no_op(name, fn=None, /, *, mutates_args, device_types=None, schema=None):
        def wrap(func):
            return func

        return wrap if fn is None else fn

    def register_fake_no_op(op, fn=None, /, *, lib=None, _stacklevel=1):
        def wrap(func):
            return func

        return wrap if fn is None else fn

    _custom_op = custom_op_no_op
    _register_fake = register_fake_no_op

154

155
156
logger = get_logger(__name__)  # pylint: disable=invalid-name

157
158
159
160
161
162
163
164
165
166
167
168
# TODO(aryan): Add support for the following:
# - Sage Attention++
# - block sparse, radial and other attention methods
# - CP with sage attention, flex, xformers, other missing backends
# - Add support for normal and CP training with backends that don't support it yet


class AttentionBackendName(str, Enum):
    # EAGER = "eager"

    # `flash-attn`
    FLASH = "flash"
169
    FLASH_HUB = "flash_hub"
170
171
172
    FLASH_VARLEN = "flash_varlen"
    _FLASH_3 = "_flash_3"
    _FLASH_VARLEN_3 = "_flash_varlen_3"
173
174
    _FLASH_3_HUB = "_flash_3_hub"
    # _FLASH_VARLEN_3_HUB = "_flash_varlen_3_hub"  # not supported yet.
175

176
177
178
    # `aiter`
    AITER = "aiter"

179
180
181
182
183
184
185
186
187
188
189
190
    # PyTorch native
    FLEX = "flex"
    NATIVE = "native"
    _NATIVE_CUDNN = "_native_cudnn"
    _NATIVE_EFFICIENT = "_native_efficient"
    _NATIVE_FLASH = "_native_flash"
    _NATIVE_MATH = "_native_math"
    _NATIVE_NPU = "_native_npu"
    _NATIVE_XLA = "_native_xla"

    # `sageattention`
    SAGE = "sage"
191
    SAGE_HUB = "sage_hub"
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    SAGE_VARLEN = "sage_varlen"
    _SAGE_QK_INT8_PV_FP8_CUDA = "_sage_qk_int8_pv_fp8_cuda"
    _SAGE_QK_INT8_PV_FP8_CUDA_SM90 = "_sage_qk_int8_pv_fp8_cuda_sm90"
    _SAGE_QK_INT8_PV_FP16_CUDA = "_sage_qk_int8_pv_fp16_cuda"
    _SAGE_QK_INT8_PV_FP16_TRITON = "_sage_qk_int8_pv_fp16_triton"
    # TODO: let's not add support for Sparge Attention now because it requires tuning per model
    # We can look into supporting something "autotune"-ing in the future
    # SPARGE = "sparge"

    # `xformers`
    XFORMERS = "xformers"


class _AttentionBackendRegistry:
    _backends = {}
    _constraints = {}
    _supported_arg_names = {}
209
    _supports_context_parallel = set()
210
211
212
213
    _active_backend = AttentionBackendName(DIFFUSERS_ATTN_BACKEND)
    _checks_enabled = DIFFUSERS_ATTN_CHECKS

    @classmethod
214
215
216
217
218
219
    def register(
        cls,
        backend: AttentionBackendName,
        constraints: Optional[List[Callable]] = None,
        supports_context_parallel: bool = False,
    ):
220
221
222
223
224
225
        logger.debug(f"Registering attention backend: {backend} with constraints: {constraints}")

        def decorator(func):
            cls._backends[backend] = func
            cls._constraints[backend] = constraints or []
            cls._supported_arg_names[backend] = set(inspect.signature(func).parameters.keys())
226
227
228
            if supports_context_parallel:
                cls._supports_context_parallel.add(backend.value)

229
230
231
232
233
234
235
236
237
238
239
240
            return func

        return decorator

    @classmethod
    def get_active_backend(cls):
        return cls._active_backend, cls._backends[cls._active_backend]

    @classmethod
    def list_backends(cls):
        return list(cls._backends.keys())

241
    @classmethod
242
243
244
    def _is_context_parallel_available(
        cls,
        backend: AttentionBackendName,
245
    ) -> bool:
246
247
        supports_context_parallel = backend.value in cls._supports_context_parallel
        return supports_context_parallel
248

249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
@dataclass
class _HubKernelConfig:
    """Configuration for downloading and using a hub-based attention kernel."""

    repo_id: str
    function_attr: str
    revision: Optional[str] = None
    kernel_fn: Optional[Callable] = None


# Registry for hub-based attention kernels
_HUB_KERNELS_REGISTRY: Dict["AttentionBackendName", _HubKernelConfig] = {
    # TODO: temporary revision for now. Remove when merged upstream into `main`.
    AttentionBackendName._FLASH_3_HUB: _HubKernelConfig(
        repo_id="kernels-community/flash-attn3", function_attr="flash_attn_func", revision="fake-ops-return-probs"
265
266
267
268
269
270
271
    ),
    AttentionBackendName.FLASH_HUB: _HubKernelConfig(
        repo_id="kernels-community/flash-attn2", function_attr="flash_attn_func", revision=None
    ),
    AttentionBackendName.SAGE_HUB: _HubKernelConfig(
        repo_id="kernels-community/sage_attention", function_attr="sageattn", revision=None
    ),
272
273
274
}


275
@contextlib.contextmanager
276
def attention_backend(backend: Union[str, AttentionBackendName] = AttentionBackendName.NATIVE):
277
278
279
280
281
282
    """
    Context manager to set the active attention backend.
    """
    if backend not in _AttentionBackendRegistry._backends:
        raise ValueError(f"Backend {backend} is not registered.")

283
284
    backend = AttentionBackendName(backend)
    _check_attention_backend_requirements(backend)
YiYi Xu's avatar
YiYi Xu committed
285
    _maybe_download_kernel_for_backend(backend)
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    old_backend = _AttentionBackendRegistry._active_backend
    _AttentionBackendRegistry._active_backend = backend

    try:
        yield
    finally:
        _AttentionBackendRegistry._active_backend = old_backend


def dispatch_attention_fn(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    attention_kwargs: Optional[Dict[str, Any]] = None,
    *,
    backend: Optional[AttentionBackendName] = None,
308
    parallel_config: Optional["ParallelConfig"] = None,
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
) -> torch.Tensor:
    attention_kwargs = attention_kwargs or {}

    if backend is None:
        # If no backend is specified, we either use the default backend (set via the DIFFUSERS_ATTN_BACKEND environment
        # variable), or we use a custom backend based on whether user is using the `attention_backend` context manager
        backend_name, backend_fn = _AttentionBackendRegistry.get_active_backend()
    else:
        backend_name = AttentionBackendName(backend)
        backend_fn = _AttentionBackendRegistry._backends.get(backend_name)

    kwargs = {
        "query": query,
        "key": key,
        "value": value,
        "attn_mask": attn_mask,
        "dropout_p": dropout_p,
        "is_causal": is_causal,
        "scale": scale,
        **attention_kwargs,
329
        "_parallel_config": parallel_config,
330
    }
331
332
    if is_torch_version(">=", "2.5.0"):
        kwargs["enable_gqa"] = enable_gqa
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

    if _AttentionBackendRegistry._checks_enabled:
        removed_kwargs = set(kwargs) - set(_AttentionBackendRegistry._supported_arg_names[backend_name])
        if removed_kwargs:
            logger.warning(f"Removing unsupported arguments for attention backend {backend_name}: {removed_kwargs}.")
        for check in _AttentionBackendRegistry._constraints.get(backend_name):
            check(**kwargs)

    kwargs = {k: v for k, v in kwargs.items() if k in _AttentionBackendRegistry._supported_arg_names[backend_name]}
    return backend_fn(**kwargs)


# ===== Checks =====
# A list of very simple functions to catch common errors quickly when debugging.


def _check_attn_mask_or_causal(attn_mask: Optional[torch.Tensor], is_causal: bool, **kwargs) -> None:
    if attn_mask is not None and is_causal:
        raise ValueError("`is_causal` cannot be True when `attn_mask` is not None.")


def _check_device(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    if query.device != key.device or query.device != value.device:
        raise ValueError("Query, key, and value must be on the same device.")
    if query.dtype != key.dtype or query.dtype != value.dtype:
        raise ValueError("Query, key, and value must have the same dtype.")


def _check_device_cuda(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    _check_device(query, key, value)
    if query.device.type != "cuda":
        raise ValueError("Query, key, and value must be on a CUDA device.")


def _check_device_cuda_atleast_smXY(major: int, minor: int) -> Callable:
    def check_device_cuda(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
        _check_device_cuda(query, key, value)
        if torch.cuda.get_device_capability(query.device) < (major, minor):
            raise ValueError(
                f"Query, key, and value must be on a CUDA device with compute capability >= {major}.{minor}."
            )

    return check_device_cuda


def _check_qkv_dtype_match(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    if query.dtype != key.dtype:
        raise ValueError("Query and key must have the same dtype.")
    if query.dtype != value.dtype:
        raise ValueError("Query and value must have the same dtype.")


def _check_qkv_dtype_bf16_or_fp16(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    _check_qkv_dtype_match(query, key, value)
    if query.dtype not in (torch.bfloat16, torch.float16):
        raise ValueError("Query, key, and value must be either bfloat16 or float16.")


def _check_shape(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    **kwargs,
) -> None:
398
399
400
401
402
403
    # Expected shapes:
    # query: (batch_size, seq_len_q, num_heads, head_dim)
    # key:   (batch_size, seq_len_kv, num_heads, head_dim)
    # value: (batch_size, seq_len_kv, num_heads, head_dim)
    # attn_mask: (seq_len_q, seq_len_kv) or (batch_size, seq_len_q, seq_len_kv)
    #            or (batch_size, num_heads, seq_len_q, seq_len_kv)
404
    if query.shape[-1] != key.shape[-1]:
405
406
407
408
409
        raise ValueError("Query and key must have the same head dimension.")
    if key.shape[-3] != value.shape[-3]:
        raise ValueError("Key and value must have the same sequence length.")
    if attn_mask is not None and attn_mask.shape[-1] != key.shape[-3]:
        raise ValueError("Attention mask must match the key's sequence length.")
410
411
412
413
414


# ===== Helper functions =====


415
416
417
418
419
420
421
422
423
424
425
426
427
def _check_attention_backend_requirements(backend: AttentionBackendName) -> None:
    if backend in [AttentionBackendName.FLASH, AttentionBackendName.FLASH_VARLEN]:
        if not _CAN_USE_FLASH_ATTN:
            raise RuntimeError(
                f"Flash Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `flash-attn>={_REQUIRED_FLASH_VERSION}`."
            )

    elif backend in [AttentionBackendName._FLASH_3, AttentionBackendName._FLASH_VARLEN_3]:
        if not _CAN_USE_FLASH_ATTN_3:
            raise RuntimeError(
                f"Flash Attention 3 backend '{backend.value}' is not usable because of missing package or the version is too old. Please build FA3 beta release from source."
            )

428
429
    # TODO: add support Hub variant of varlen later
    elif backend in [AttentionBackendName._FLASH_3_HUB, AttentionBackendName.FLASH_HUB, AttentionBackendName.SAGE_HUB]:
430
431
        if not is_kernels_available():
            raise RuntimeError(
432
                f"Backend '{backend.value}' is not usable because the `kernels` package isn't available. Please install it with `pip install kernels`."
433
434
            )

435
436
437
438
439
440
    elif backend == AttentionBackendName.AITER:
        if not _CAN_USE_AITER_ATTN:
            raise RuntimeError(
                f"Aiter Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `aiter>={_REQUIRED_AITER_VERSION}`."
            )

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    elif backend in [
        AttentionBackendName.SAGE,
        AttentionBackendName.SAGE_VARLEN,
        AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA,
        AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA_SM90,
        AttentionBackendName._SAGE_QK_INT8_PV_FP16_CUDA,
        AttentionBackendName._SAGE_QK_INT8_PV_FP16_TRITON,
    ]:
        if not _CAN_USE_SAGE_ATTN:
            raise RuntimeError(
                f"Sage Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `sageattention>={_REQUIRED_SAGE_VERSION}`."
            )

    elif backend == AttentionBackendName.FLEX:
        if not _CAN_USE_FLEX_ATTN:
            raise RuntimeError(
                f"Flex Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch>=2.5.0`."
            )

    elif backend == AttentionBackendName._NATIVE_NPU:
        if not _CAN_USE_NPU_ATTN:
            raise RuntimeError(
                f"NPU Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch_npu`."
            )

    elif backend == AttentionBackendName._NATIVE_XLA:
        if not _CAN_USE_XLA_ATTN:
            raise RuntimeError(
                f"XLA Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch_xla>={_REQUIRED_XLA_VERSION}`."
            )

    elif backend == AttentionBackendName.XFORMERS:
        if not _CAN_USE_XFORMERS_ATTN:
            raise RuntimeError(
                f"Xformers Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `xformers>={_REQUIRED_XFORMERS_VERSION}`."
            )


479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
@functools.lru_cache(maxsize=128)
def _prepare_for_flash_attn_or_sage_varlen_without_mask(
    batch_size: int,
    seq_len_q: int,
    seq_len_kv: int,
    device: Optional[torch.device] = None,
):
    seqlens_q = torch.full((batch_size,), seq_len_q, dtype=torch.int32, device=device)
    seqlens_k = torch.full((batch_size,), seq_len_kv, dtype=torch.int32, device=device)
    cu_seqlens_q = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_k = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_q[1:] = torch.cumsum(seqlens_q, dim=0)
    cu_seqlens_k[1:] = torch.cumsum(seqlens_k, dim=0)
    max_seqlen_q = seqlens_q.max().item()
    max_seqlen_k = seqlens_k.max().item()
    return (seqlens_q, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)


def _prepare_for_flash_attn_or_sage_varlen_with_mask(
    batch_size: int,
    seq_len_q: int,
    attn_mask: torch.Tensor,
    device: Optional[torch.device] = None,
):
    seqlens_q = torch.full((batch_size,), seq_len_q, dtype=torch.int32, device=device)
    seqlens_k = attn_mask.sum(dim=1, dtype=torch.int32)
    cu_seqlens_q = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_k = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_q[1:] = torch.cumsum(seqlens_q, dim=0)
    cu_seqlens_k[1:] = torch.cumsum(seqlens_k, dim=0)
    max_seqlen_q = seqlens_q.max().item()
    max_seqlen_k = seqlens_k.max().item()
    return (seqlens_q, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)


def _prepare_for_flash_attn_or_sage_varlen(
    batch_size: int,
    seq_len_q: int,
    seq_len_kv: int,
    attn_mask: Optional[torch.Tensor] = None,
    device: Optional[torch.device] = None,
) -> None:
    if attn_mask is None:
        return _prepare_for_flash_attn_or_sage_varlen_without_mask(batch_size, seq_len_q, seq_len_kv, device)
    return _prepare_for_flash_attn_or_sage_varlen_with_mask(batch_size, seq_len_q, attn_mask, device)


def _normalize_attn_mask(attn_mask: torch.Tensor, batch_size: int, seq_len_k: int) -> torch.Tensor:
    """
    Normalize an attention mask to shape [batch_size, seq_len_k] (bool) suitable for inferring seqlens_[q|k] in
    FlashAttention/Sage varlen.

    Supports 1D to 4D shapes and common broadcasting patterns.
    """
    if attn_mask.dtype != torch.bool:
        raise ValueError(f"Attention mask must be of type bool, got {attn_mask.dtype}.")

    if attn_mask.ndim == 1:
        # [seq_len_k] -> broadcast across batch
        attn_mask = attn_mask.unsqueeze(0).expand(batch_size, seq_len_k)

    elif attn_mask.ndim == 2:
        # [batch_size, seq_len_k]. Maybe broadcast across batch
        if attn_mask.size(0) not in [1, batch_size]:
            raise ValueError(
                f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 2D attention mask."
            )
        attn_mask = attn_mask.expand(batch_size, seq_len_k)

    elif attn_mask.ndim == 3:
        # [batch_size, seq_len_q, seq_len_k] -> reduce over query dimension
        # We do this reduction because we know that arbitrary QK masks is not supported in Flash/Sage varlen.
        if attn_mask.size(0) not in [1, batch_size]:
            raise ValueError(
                f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 3D attention mask."
            )
        attn_mask = attn_mask.any(dim=1)
        attn_mask = attn_mask.expand(batch_size, seq_len_k)

    elif attn_mask.ndim == 4:
        # [batch_size, num_heads, seq_len_q, seq_len_k] or broadcastable versions
        if attn_mask.size(0) not in [1, batch_size]:
            raise ValueError(
                f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 4D attention mask."
            )
        attn_mask = attn_mask.expand(batch_size, -1, -1, seq_len_k)  # [B, H, Q, K]
        attn_mask = attn_mask.any(dim=(1, 2))  # [B, K]

    else:
        raise ValueError(f"Unsupported attention mask shape: {attn_mask.shape}")

    if attn_mask.shape != (batch_size, seq_len_k):
        raise ValueError(
            f"Normalized attention mask shape mismatch: got {attn_mask.shape}, expected ({batch_size}, {seq_len_k})"
        )

    return attn_mask


def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
    return q_idx >= kv_idx


582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# ===== Helpers for downloading kernels =====
def _maybe_download_kernel_for_backend(backend: AttentionBackendName) -> None:
    if backend not in _HUB_KERNELS_REGISTRY:
        return
    config = _HUB_KERNELS_REGISTRY[backend]

    if config.kernel_fn is not None:
        return

    try:
        from kernels import get_kernel

        kernel_module = get_kernel(config.repo_id, revision=config.revision)
        kernel_func = getattr(kernel_module, config.function_attr)

        # Cache the downloaded kernel function in the config object
        config.kernel_fn = kernel_func

    except Exception as e:
        logger.error(f"An error occurred while fetching kernel '{config.repo_id}' from the Hub: {e}")
        raise


605
606
607
608
# ===== torch op registrations =====
# Registrations are required for fullgraph tracing compatibility
# TODO: this is only required because the beta release FA3 does not have it. There is a PR adding
# this but it was never merged: https://github.com/Dao-AILab/flash-attention/pull/1590
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
@_custom_op("_diffusers_flash_attn_3::_flash_attn_forward", mutates_args=(), device_types="cuda")
def _wrapped_flash_attn_3(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    qv: Optional[torch.Tensor] = None,
    q_descale: Optional[torch.Tensor] = None,
    k_descale: Optional[torch.Tensor] = None,
    v_descale: Optional[torch.Tensor] = None,
    attention_chunk: int = 0,
    softcap: float = 0.0,
    num_splits: int = 1,
    pack_gqa: Optional[bool] = None,
    deterministic: bool = False,
    sm_margin: int = 0,
626
) -> Tuple[torch.Tensor, torch.Tensor]:
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    # Hardcoded for now because pytorch does not support tuple/int type hints
    window_size = (-1, -1)
    out, lse, *_ = flash_attn_3_func(
        q=q,
        k=k,
        v=v,
        softmax_scale=softmax_scale,
        causal=causal,
        qv=qv,
        q_descale=q_descale,
        k_descale=k_descale,
        v_descale=v_descale,
        window_size=window_size,
        attention_chunk=attention_chunk,
        softcap=softcap,
        num_splits=num_splits,
        pack_gqa=pack_gqa,
        deterministic=deterministic,
        sm_margin=sm_margin,
    )
647
648
649
650
    lse = lse.permute(0, 2, 1)
    return out, lse


651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
@_register_fake("_diffusers_flash_attn_3::_flash_attn_forward")
def _(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    qv: Optional[torch.Tensor] = None,
    q_descale: Optional[torch.Tensor] = None,
    k_descale: Optional[torch.Tensor] = None,
    v_descale: Optional[torch.Tensor] = None,
    attention_chunk: int = 0,
    softcap: float = 0.0,
    num_splits: int = 1,
    pack_gqa: Optional[bool] = None,
    deterministic: bool = False,
    sm_margin: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
    window_size = (-1, -1)  # noqa: F841
    # A lot of the parameters here are not yet used in any way within diffusers.
    # We can safely ignore for now and keep the fake op shape propagation simple.
    batch_size, seq_len, num_heads, head_dim = q.shape
673
    lse_shape = (batch_size, seq_len, num_heads)
674
675
676
677
678
679
    return torch.empty_like(q), q.new_empty(lse_shape)


# ===== Helper functions to use attention backends with templated CP autograd functions =====


680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
def _native_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    # Native attention does not return_lse
    if return_lse:
        raise ValueError("Native attention does not support return_lse=True")

    # used for backward pass
    if _save_ctx:
        ctx.save_for_backward(query, key, value)
        ctx.attn_mask = attn_mask
        ctx.dropout_p = dropout_p
        ctx.is_causal = is_causal
        ctx.scale = scale
        ctx.enable_gqa = enable_gqa

    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    out = torch.nn.functional.scaled_dot_product_attention(
        query=query,
        key=key,
        value=value,
        attn_mask=attn_mask,
        dropout_p=dropout_p,
        is_causal=is_causal,
        scale=scale,
        enable_gqa=enable_gqa,
    )
    out = out.permute(0, 2, 1, 3)

    return out


def _native_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
    **kwargs,
):
    query, key, value = ctx.saved_tensors

    query.requires_grad_(True)
    key.requires_grad_(True)
    value.requires_grad_(True)

    query_t, key_t, value_t = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    out = torch.nn.functional.scaled_dot_product_attention(
        query=query_t,
        key=key_t,
        value=value_t,
        attn_mask=ctx.attn_mask,
        dropout_p=ctx.dropout_p,
        is_causal=ctx.is_causal,
        scale=ctx.scale,
        enable_gqa=ctx.enable_gqa,
    )
    out = out.permute(0, 2, 1, 3)

    grad_out_t = grad_out.permute(0, 2, 1, 3)
    grad_query_t, grad_key_t, grad_value_t = torch.autograd.grad(
        outputs=out, inputs=[query_t, key_t, value_t], grad_outputs=grad_out_t, retain_graph=False
    )

    grad_query = grad_query_t.permute(0, 2, 1, 3)
    grad_key = grad_key_t.permute(0, 2, 1, 3)
    grad_value = grad_value_t.permute(0, 2, 1, 3)

    return grad_query, grad_key, grad_value


760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
# https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14958
# forward declaration:
#   aten::_scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0., bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
def _cudnn_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if enable_gqa:
        raise ValueError("`enable_gqa` is not yet supported for cuDNN attention.")

    tensors_to_save = ()

    # Contiguous is a must here! Calling cuDNN backend with aten ops produces incorrect results
    # if the input tensors are not contiguous.
    query = query.transpose(1, 2).contiguous()
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()
    tensors_to_save += (query, key, value)

    out, lse, cum_seq_q, cum_seq_k, max_q, max_k, philox_seed, philox_offset, debug_attn_mask = (
        torch.ops.aten._scaled_dot_product_cudnn_attention(
            query=query,
            key=key,
            value=value,
            attn_bias=attn_mask,
            compute_log_sumexp=return_lse,
            dropout_p=dropout_p,
            is_causal=is_causal,
            return_debug_mask=False,
            scale=scale,
        )
    )

    tensors_to_save += (out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset)
    if _save_ctx:
        ctx.save_for_backward(*tensors_to_save)
        ctx.dropout_p = dropout_p
        ctx.is_causal = is_causal
        ctx.scale = scale
        ctx.attn_mask = attn_mask
        ctx.max_q = max_q
        ctx.max_k = max_k

    out = out.transpose(1, 2).contiguous()
    if lse is not None:
        lse = lse.transpose(1, 2).contiguous()
    return (out, lse) if return_lse else out


# backward declaration:
#   aten::_scaled_dot_product_cudnn_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, Tensor attn_bias, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, *, float? scale=None) -> (Tensor, Tensor, Tensor)
def _cudnn_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
    **kwargs,
):
    query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset = ctx.saved_tensors

    grad_out = grad_out.transpose(1, 2).contiguous()
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()

    # Cannot pass first 5 arguments as kwargs because: https://github.com/pytorch/pytorch/blob/d26ca5de058dbcf56ac52bb43e84dd98df2ace97/torch/_dynamo/variables/torch.py#L1341
    grad_query, grad_key, grad_value = torch.ops.aten._scaled_dot_product_cudnn_attention_backward(
        grad_out,
        query,
        key,
        value,
        out,
        logsumexp=lse,
        philox_seed=philox_seed,
        philox_offset=philox_offset,
        attn_bias=ctx.attn_mask,
        cum_seq_q=cum_seq_q,
        cum_seq_k=cum_seq_k,
        max_q=ctx.max_q,
        max_k=ctx.max_k,
        dropout_p=ctx.dropout_p,
        is_causal=ctx.is_causal,
        scale=ctx.scale,
    )
    grad_query, grad_key, grad_value = (x.transpose(1, 2).contiguous() for x in (grad_query, grad_key, grad_value))

    return grad_query, grad_key, grad_value


# Adapted from: https://github.com/Dao-AILab/flash-attention/blob/fd2fc9d85c8e54e5c20436465bca709bc1a6c5a1/flash_attn/flash_attn_interface.py#L807
def _flash_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if attn_mask is not None:
        raise ValueError("`attn_mask` is not yet supported for flash-attn 2.")
    if enable_gqa:
        raise ValueError("`enable_gqa` is not yet supported for flash-attn 2.")

    # Hardcoded for now
    window_size = (-1, -1)
    softcap = 0.0
    alibi_slopes = None
    deterministic = False
    grad_enabled = any(x.requires_grad for x in (query, key, value))

    if scale is None:
        scale = query.shape[-1] ** (-0.5)

    # flash-attn only returns LSE if dropout_p > 0. So, we need to workaround.
    if grad_enabled or (_parallel_config is not None and _parallel_config.context_parallel_config._world_size > 1):
        dropout_p = dropout_p if dropout_p > 0 else 1e-30

    with torch.set_grad_enabled(grad_enabled):
        out, lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
            query,
            key,
            value,
            dropout_p,
            scale,
            is_causal,
            window_size[0],
            window_size[1],
            softcap,
            alibi_slopes,
            return_lse,
        )
        lse = lse.permute(0, 2, 1)

    if _save_ctx:
        ctx.save_for_backward(query, key, value, out, lse, rng_state)
        ctx.dropout_p = dropout_p
        ctx.scale = scale
        ctx.is_causal = is_causal
        ctx.window_size = window_size
        ctx.softcap = softcap
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic

    return (out, lse) if return_lse else out


def _flash_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
    **kwargs,
):
    query, key, value, out, lse, rng_state = ctx.saved_tensors
    grad_query, grad_key, grad_value = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)

    lse_d = _wrapped_flash_attn_backward(  # noqa: F841
        grad_out,
        query,
        key,
        value,
        out,
        lse,
        grad_query,
        grad_key,
        grad_value,
        ctx.dropout_p,
        ctx.scale,
        ctx.is_causal,
        ctx.window_size[0],
        ctx.window_size[1],
        ctx.softcap,
        ctx.alibi_slopes,
        ctx.deterministic,
        rng_state,
    )

    # Head dimension may have been padded
    grad_query = grad_query[..., : grad_out.shape[-1]]
    grad_key = grad_key[..., : grad_out.shape[-1]]
    grad_value = grad_value[..., : grad_out.shape[-1]]

    return grad_query, grad_key, grad_value


def _sage_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if attn_mask is not None:
        raise ValueError("`attn_mask` is not yet supported for Sage attention.")
    if dropout_p > 0.0:
        raise ValueError("`dropout_p` is not yet supported for Sage attention.")
    if enable_gqa:
        raise ValueError("`enable_gqa` is not yet supported for Sage attention.")

    out = sageattn(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )
    lse = None
    if return_lse:
        out, lse, *_ = out
        lse = lse.permute(0, 2, 1)

    return (out, lse) if return_lse else out


def _sage_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
):
    raise NotImplementedError("Backward pass is not implemented for Sage attention.")


# ===== Context parallel =====


# Reference:
# - https://github.com/pytorch/pytorch/blob/f58a680d09e13658a52c6ba05c63c15759846bcc/torch/distributed/_functional_collectives.py#L827
# - https://github.com/pytorch/pytorch/blob/f58a680d09e13658a52c6ba05c63c15759846bcc/torch/distributed/_functional_collectives.py#L246
# For fullgraph=True tracing compatibility (since FakeTensor does not have a `wait` method):
def _wait_tensor(tensor):
    if isinstance(tensor, funcol.AsyncCollectiveTensor):
        tensor = tensor.wait()
    return tensor


def _all_to_all_single(x: torch.Tensor, group) -> torch.Tensor:
    shape = x.shape
    # HACK: We need to flatten because despite making tensors contiguous, torch single-file-ization
    # to benchmark triton codegen fails somewhere:
    # buf25 = torch.ops._c10d_functional.all_to_all_single.default(buf24, [1, 1], [1, 1], '3')
    # ValueError: Tensors must be contiguous
    x = x.flatten()
    x = funcol.all_to_all_single(x, None, None, group)
    x = x.reshape(shape)
    x = _wait_tensor(x)
    return x


class TemplatedRingAttention(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: torch.autograd.function.FunctionCtx,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attn_mask: Optional[torch.Tensor],
        dropout_p: float,
        is_causal: bool,
        scale: Optional[float],
        enable_gqa: bool,
        return_lse: bool,
        forward_op,
        backward_op,
        _parallel_config: Optional["ParallelConfig"] = None,
    ):
        ring_mesh = _parallel_config.context_parallel_config._ring_mesh
        rank = _parallel_config.context_parallel_config._ring_local_rank
        world_size = _parallel_config.context_parallel_config.ring_degree
        next_rank = (rank + 1) % world_size
        prev_out = prev_lse = None

        ctx.forward_op = forward_op
        ctx.backward_op = backward_op
        ctx.q_shape = query.shape
        ctx.kv_shape = key.shape
        ctx._parallel_config = _parallel_config

        kv_buffer = torch.cat([key.flatten(), value.flatten()]).contiguous()
        kv_buffer = funcol.all_gather_tensor(kv_buffer, gather_dim=0, group=ring_mesh.get_group())
        kv_buffer = kv_buffer.chunk(world_size)

        for i in range(world_size):
            if i > 0:
                kv = kv_buffer[next_rank]
                key_numel = key.numel()
                key = kv[:key_numel].reshape_as(key)
                value = kv[key_numel:].reshape_as(value)
                next_rank = (next_rank + 1) % world_size

            out, lse = forward_op(
                ctx,
                query,
                key,
                value,
                attn_mask,
                dropout_p,
                is_causal,
                scale,
                enable_gqa,
                True,
                _save_ctx=i == 0,
                _parallel_config=_parallel_config,
            )

            if _parallel_config.context_parallel_config.convert_to_fp32:
                out = out.to(torch.float32)
                lse = lse.to(torch.float32)

            lse = lse.unsqueeze(-1)
            if prev_out is not None:
                out = prev_out - torch.nn.functional.sigmoid(lse - prev_lse) * (prev_out - out)
                lse = prev_lse - torch.nn.functional.logsigmoid(prev_lse - lse)
            prev_out = out
            prev_lse = lse

        out = out.to(query.dtype)
        lse = lse.squeeze(-1)

        return (out, lse) if return_lse else out

    @staticmethod
    def backward(
        ctx: torch.autograd.function.FunctionCtx,
        grad_out: torch.Tensor,
        *args,
    ):
        ring_mesh = ctx._parallel_config.context_parallel_config._ring_mesh
        rank = ctx._parallel_config.context_parallel_config._ring_local_rank
        world_size = ctx._parallel_config.context_parallel_config.ring_degree
        next_rank = (rank + 1) % world_size
        next_ranks = list(range(1, world_size)) + [0]

        accum_dtype = torch.float32 if ctx._parallel_config.context_parallel_config.convert_to_fp32 else grad_out.dtype
        grad_query = torch.zeros(ctx.q_shape, dtype=accum_dtype, device=grad_out.device)
        grad_key = torch.zeros(ctx.kv_shape, dtype=accum_dtype, device=grad_out.device)
        grad_value = torch.zeros(ctx.kv_shape, dtype=accum_dtype, device=grad_out.device)
        next_grad_kv = None

        query, key, value, *_ = ctx.saved_tensors
        kv_buffer = torch.cat([key.flatten(), value.flatten()]).contiguous()
        kv_buffer = funcol.all_gather_tensor(kv_buffer, gather_dim=0, group=ring_mesh.get_group())
        kv_buffer = kv_buffer.chunk(world_size)

        for i in range(world_size):
            if i > 0:
                kv = kv_buffer[next_rank]
                key_numel = key.numel()
                key = kv[:key_numel].reshape_as(key)
                value = kv[key_numel:].reshape_as(value)
                next_rank = (next_rank + 1) % world_size

            grad_query_op, grad_key_op, grad_value_op, *_ = ctx.backward_op(ctx, grad_out)

            if i > 0:
                grad_kv_buffer = _wait_tensor(next_grad_kv)
                grad_key_numel = grad_key.numel()
                grad_key = grad_kv_buffer[:grad_key_numel].reshape_as(grad_key)
                grad_value = grad_kv_buffer[grad_key_numel:].reshape_as(grad_value)

            grad_query += grad_query_op
            grad_key += grad_key_op
            grad_value += grad_value_op

            if i < world_size - 1:
                grad_kv_buffer = torch.cat([grad_key.flatten(), grad_value.flatten()]).contiguous()
                next_grad_kv = funcol.permute_tensor(grad_kv_buffer, next_ranks, group=ring_mesh.get_group())

        grad_query, grad_key, grad_value = (x.to(grad_out.dtype) for x in (grad_query, grad_key, grad_value))

        return grad_query, grad_key, grad_value, None, None, None, None, None, None, None, None


class TemplatedUlyssesAttention(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: torch.autograd.function.FunctionCtx,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attn_mask: Optional[torch.Tensor],
        dropout_p: float,
        is_causal: bool,
        scale: Optional[float],
        enable_gqa: bool,
        return_lse: bool,
        forward_op,
        backward_op,
        _parallel_config: Optional["ParallelConfig"] = None,
    ):
        ulysses_mesh = _parallel_config.context_parallel_config._ulysses_mesh
        world_size = _parallel_config.context_parallel_config.ulysses_degree
        group = ulysses_mesh.get_group()

        ctx.forward_op = forward_op
        ctx.backward_op = backward_op
        ctx._parallel_config = _parallel_config

        B, S_Q_LOCAL, H, D = query.shape
        _, S_KV_LOCAL, _, _ = key.shape
        H_LOCAL = H // world_size
        query = query.reshape(B, S_Q_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        key = key.reshape(B, S_KV_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        value = value.reshape(B, S_KV_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        query, key, value = (_all_to_all_single(x, group) for x in (query, key, value))
        query, key, value = (x.flatten(0, 1).permute(1, 0, 2, 3).contiguous() for x in (query, key, value))

        out = forward_op(
            ctx,
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            _save_ctx=True,
            _parallel_config=_parallel_config,
        )
        if return_lse:
            out, lse, *_ = out

        out = out.reshape(B, world_size, S_Q_LOCAL, H_LOCAL, D).permute(1, 3, 0, 2, 4).contiguous()
        out = _all_to_all_single(out, group)
        out = out.flatten(0, 1).permute(1, 2, 0, 3).contiguous()

        if return_lse:
            lse = lse.reshape(B, world_size, S_Q_LOCAL, H_LOCAL).permute(1, 3, 0, 2).contiguous()
            lse = _all_to_all_single(lse, group)
            lse = lse.flatten(0, 1).permute(1, 2, 0).contiguous()
        else:
            lse = None

        return (out, lse) if return_lse else out

    @staticmethod
    def backward(
        ctx: torch.autograd.function.FunctionCtx,
        grad_out: torch.Tensor,
        *args,
    ):
        ulysses_mesh = ctx._parallel_config.context_parallel_config._ulysses_mesh
        world_size = ctx._parallel_config.context_parallel_config.ulysses_degree
        group = ulysses_mesh.get_group()

        B, S_LOCAL, H, D = grad_out.shape
        H_LOCAL = H // world_size

        grad_out = grad_out.reshape(B, S_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        grad_out = _all_to_all_single(grad_out, group)
        grad_out = grad_out.flatten(0, 1).permute(1, 0, 2, 3).contiguous()

        grad_query_op, grad_key_op, grad_value_op, *_ = ctx.backward_op(ctx, grad_out)

        grad_query, grad_key, grad_value = (
            x.reshape(B, world_size, S_LOCAL, H_LOCAL, D).permute(1, 3, 0, 2, 4).contiguous()
            for x in (grad_query_op, grad_key_op, grad_value_op)
        )
        grad_query, grad_key, grad_value = (_all_to_all_single(x, group) for x in (grad_query, grad_key, grad_value))
        grad_query, grad_key, grad_value = (
            x.flatten(0, 1).permute(1, 2, 0, 3).contiguous() for x in (grad_query, grad_key, grad_value)
        )

        return grad_query, grad_key, grad_value, None, None, None, None, None, None, None, None


def _templated_context_parallel_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    *,
    forward_op,
    backward_op,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if attn_mask is not None:
        raise ValueError("Attention mask is not yet supported for templated attention.")
    if is_causal:
        raise ValueError("Causal attention is not yet supported for templated attention.")
    if enable_gqa:
        raise ValueError("GQA is not yet supported for templated attention.")

    # TODO: add support for unified attention with ring/ulysses degree both being > 1
    if _parallel_config.context_parallel_config.ring_degree > 1:
        return TemplatedRingAttention.apply(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op,
            backward_op,
            _parallel_config,
        )
    elif _parallel_config.context_parallel_config.ulysses_degree > 1:
        return TemplatedUlyssesAttention.apply(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op,
            backward_op,
            _parallel_config,
        )
    else:
        raise ValueError("Reaching this branch of code is unexpected. Please report a bug.")
1304
1305
1306
1307
1308
1309
1310
1311


# ===== Attention backends =====


@_AttentionBackendRegistry.register(
    AttentionBackendName.FLASH,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
1312
    supports_context_parallel=True,
1313
1314
1315
1316
1317
1318
1319
)
def _flash_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    is_causal: bool = False,
1320
1321
1322
    scale: Optional[float] = None,
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1323
) -> torch.Tensor:
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
    lse = None
    if _parallel_config is None:
        out = flash_attn_func(
            q=query,
            k=key,
            v=value,
            dropout_p=dropout_p,
            softmax_scale=scale,
            causal=is_causal,
            return_attn_probs=return_lse,
        )
        if return_lse:
            out, lse, *_ = out
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            None,
            dropout_p,
            is_causal,
            scale,
            False,
            return_lse,
            forward_op=_flash_attention_forward_op,
            backward_op=_flash_attention_backward_op,
            _parallel_config=_parallel_config,
        )
        if return_lse:
            out, lse = out

    return (out, lse) if return_lse else out
1356
1357


1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
@_AttentionBackendRegistry.register(
    AttentionBackendName.FLASH_HUB,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
    supports_context_parallel=False,
)
def _flash_attention_hub(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
    lse = None
    func = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB].kernel_fn
    out = func(
        q=query,
        k=key,
        v=value,
        dropout_p=dropout_p,
        softmax_scale=scale,
        causal=is_causal,
        return_attn_probs=return_lse,
    )
    if return_lse:
        out, lse, *_ = out

    return (out, lse) if return_lse else out


1390
1391
1392
1393
1394
1395
1396
1397
@_AttentionBackendRegistry.register(
    AttentionBackendName.FLASH_VARLEN,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _flash_varlen_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
1398
    attn_mask: Optional[torch.Tensor] = None,
1399
1400
1401
    dropout_p: float = 0.0,
    scale: Optional[float] = None,
    is_causal: bool = False,
1402
1403
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1404
1405
1406
1407
1408
1409
1410
) -> torch.Tensor:
    batch_size, seq_len_q, _, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is not None:
        attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)

1411
1412
1413
    (_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
        _prepare_for_flash_attn_or_sage_varlen(
            batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
1414
        )
1415
    )
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

    key_valid, value_valid = [], []
    for b in range(batch_size):
        valid_len = seqlens_k[b]
        key_valid.append(key[b, :valid_len])
        value_valid.append(value[b, :valid_len])

    query_packed = query.flatten(0, 1)
    key_packed = torch.cat(key_valid, dim=0)
    value_packed = torch.cat(value_valid, dim=0)

    out = flash_attn_varlen_func(
        q=query_packed,
        k=key_packed,
        v=value_packed,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
        dropout_p=dropout_p,
        softmax_scale=scale,
        causal=is_causal,
1438
        return_attn_probs=return_lse,
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
    )
    out = out.unflatten(0, (batch_size, -1))

    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._FLASH_3,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _flash_attention_3(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: Optional[float] = None,
    is_causal: bool = False,
1455
1456
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1457
) -> torch.Tensor:
1458
    out, lse = _wrapped_flash_attn_3(
1459
1460
1461
1462
1463
1464
        q=query,
        k=key,
        v=value,
        softmax_scale=scale,
        causal=is_causal,
    )
1465
    return (out, lse) if return_lse else out
1466
1467


1468
1469
1470
@_AttentionBackendRegistry.register(
    AttentionBackendName._FLASH_3_HUB,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
1471
    supports_context_parallel=False,
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
)
def _flash_attention_3_hub(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: Optional[float] = None,
    is_causal: bool = False,
    window_size: Tuple[int, int] = (-1, -1),
    softcap: float = 0.0,
    deterministic: bool = False,
    return_attn_probs: bool = False,
1483
    _parallel_config: Optional["ParallelConfig"] = None,
1484
) -> torch.Tensor:
1485
1486
1487
    if _parallel_config:
        raise NotImplementedError(f"{AttentionBackendName._FLASH_3_HUB.value} is not implemented for parallelism yet.")

1488
1489
    func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
    out = func(
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
        q=query,
        k=key,
        v=value,
        softmax_scale=scale,
        causal=is_causal,
        qv=None,
        q_descale=None,
        k_descale=None,
        v_descale=None,
        window_size=window_size,
        softcap=softcap,
        num_splits=1,
        pack_gqa=None,
        deterministic=deterministic,
        sm_margin=0,
        return_attn_probs=return_attn_probs,
    )
    # When `return_attn_probs` is True, the above returns a tuple of
    # actual outputs and lse.
    return (out[0], out[1]) if return_attn_probs else out


1512
1513
1514
1515
1516
1517
1518
1519
@_AttentionBackendRegistry.register(
    AttentionBackendName._FLASH_VARLEN_3,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _flash_varlen_attention_3(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
1520
    attn_mask: Optional[torch.Tensor] = None,
1521
1522
    scale: Optional[float] = None,
    is_causal: bool = False,
1523
1524
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1525
1526
1527
1528
1529
1530
1531
) -> torch.Tensor:
    batch_size, seq_len_q, _, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is not None:
        attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)

1532
1533
1534
    (_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
        _prepare_for_flash_attn_or_sage_varlen(
            batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
1535
        )
1536
    )
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

    key_valid, value_valid = [], []
    for b in range(batch_size):
        valid_len = seqlens_k[b]
        key_valid.append(key[b, :valid_len])
        value_valid.append(value[b, :valid_len])

    query_packed = query.flatten(0, 1)
    key_packed = torch.cat(key_valid, dim=0)
    value_packed = torch.cat(value_valid, dim=0)

    out, lse, *_ = flash_attn_3_varlen_func(
        q=query_packed,
        k=key_packed,
        v=value_packed,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
        softmax_scale=scale,
        causal=is_causal,
    )
    out = out.unflatten(0, (batch_size, -1))

1561
    return (out, lse) if return_lse else out
1562
1563


1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
@_AttentionBackendRegistry.register(
    AttentionBackendName.AITER,
    constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _aiter_flash_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
    if not return_lse and torch.is_grad_enabled():
        # aiter requires return_lse=True by assertion when gradients are enabled.
        out, lse, *_ = aiter_flash_attn_func(
            q=query,
            k=key,
            v=value,
            dropout_p=dropout_p,
            softmax_scale=scale,
            causal=is_causal,
            return_lse=True,
        )
    else:
        out = aiter_flash_attn_func(
            q=query,
            k=key,
            v=value,
            dropout_p=dropout_p,
            softmax_scale=scale,
            causal=is_causal,
            return_lse=return_lse,
        )
        if return_lse:
            out, lse, *_ = out

    return (out, lse) if return_lse else out


1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
@_AttentionBackendRegistry.register(
    AttentionBackendName.FLEX,
    constraints=[_check_attn_mask_or_causal, _check_device, _check_shape],
)
def _native_flex_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[Union[torch.Tensor, "flex_attention.BlockMask"]] = None,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
1618
    _parallel_config: Optional["ParallelConfig"] = None,
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
) -> torch.Tensor:
    # TODO: should we LRU cache the block mask creation?
    score_mod = None
    block_mask = None
    batch_size, seq_len_q, num_heads, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is None or isinstance(attn_mask, flex_attention.BlockMask):
        block_mask = attn_mask
    elif is_causal:
        block_mask = flex_attention.create_block_mask(
            _flex_attention_causal_mask_mod, batch_size, num_heads, seq_len_q, seq_len_kv, query.device
        )
    elif torch.is_tensor(attn_mask):
        if attn_mask.ndim == 2:
            attn_mask = attn_mask.view(attn_mask.size(0), 1, attn_mask.size(1), 1)

        attn_mask = attn_mask.expand(batch_size, num_heads, seq_len_q, seq_len_kv)

        if attn_mask.dtype == torch.bool:
            # TODO: this probably does not work but verify!
            def mask_mod(batch_idx, head_idx, q_idx, kv_idx):
                return attn_mask[batch_idx, head_idx, q_idx, kv_idx]

            block_mask = flex_attention.create_block_mask(
                mask_mod, batch_size, None, seq_len_q, seq_len_kv, query.device
            )
        else:

            def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
                return score + attn_mask[batch_idx, head_idx, q_idx, kv_idx]
    else:
        raise ValueError("Attention mask must be either None, a BlockMask, or a 2D/4D tensor.")

    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    out = flex_attention.flex_attention(
        query=query,
        key=key,
        value=value,
        score_mod=score_mod,
        block_mask=block_mask,
        scale=scale,
        enable_gqa=enable_gqa,
        return_lse=return_lse,
    )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName.NATIVE,
    constraints=[_check_device, _check_shape],
1671
    supports_context_parallel=True,
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
)
def _native_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1682
1683
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1684
) -> torch.Tensor:
1685
1686
    if return_lse:
        raise ValueError("Native attention backend does not support setting `return_lse=True`.")
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
    if _parallel_config is None:
        query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
        out = out.permute(0, 2, 1, 3)
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op=_native_attention_forward_op,
            backward_op=_native_attention_backward_op,
            _parallel_config=_parallel_config,
        )

1716
1717
1718
1719
1720
1721
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_CUDNN,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
1722
    supports_context_parallel=True,
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
)
def _native_cudnn_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1733
1734
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1735
) -> torch.Tensor:
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
    lse = None
    if _parallel_config is None and not return_lse:
        query, key, value = (x.permute(0, 2, 1, 3).contiguous() for x in (query, key, value))
        with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.CUDNN_ATTENTION):
            out = torch.nn.functional.scaled_dot_product_attention(
                query=query,
                key=key,
                value=value,
                attn_mask=attn_mask,
                dropout_p=dropout_p,
                is_causal=is_causal,
                scale=scale,
                enable_gqa=enable_gqa,
            )
        out = out.permute(0, 2, 1, 3)
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op=_cudnn_attention_forward_op,
            backward_op=_cudnn_attention_backward_op,
            _parallel_config=_parallel_config,
1765
        )
1766
1767
1768
1769
        if return_lse:
            out, lse = out

    return (out, lse) if return_lse else out
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_EFFICIENT,
    constraints=[_check_device, _check_shape],
)
def _native_efficient_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1785
1786
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1787
) -> torch.Tensor:
1788
1789
    if return_lse:
        raise ValueError("Native efficient attention backend does not support setting `return_lse=True`.")
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION):
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_FLASH,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _native_flash_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1818
1819
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1820
) -> torch.Tensor:
1821
1822
    if return_lse:
        raise ValueError("Native flash attention backend does not support setting `return_lse=True`.")
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.FLASH_ATTENTION):
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=None,  # not supported
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_MATH,
    constraints=[_check_device, _check_shape],
)
def _native_math_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1852
1853
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1854
) -> torch.Tensor:
1855
1856
    if return_lse:
        raise ValueError("Native math attention backend does not support setting `return_lse=True`.")
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_NPU,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _native_npu_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    scale: Optional[float] = None,
1883
1884
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1885
) -> torch.Tensor:
1886
1887
    if return_lse:
        raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
1888
1889
    query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value))
    out = npu_fusion_attention(
1890
1891
1892
        query,
        key,
        value,
1893
1894
        query.size(1),  # num_heads
        input_layout="BNSD",
1895
1896
1897
        pse=None,
        scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
        pre_tockens=65536,
1898
        next_tockens=65536,
1899
1900
1901
1902
        keep_prob=1.0 - dropout_p,
        sync=False,
        inner_precise=0,
    )[0]
1903
1904
    out = out.transpose(1, 2).contiguous()
    return out
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916


# Reference: https://github.com/pytorch/xla/blob/06c5533de6588f6b90aa1655d9850bcf733b90b4/torch_xla/experimental/custom_kernel.py#L853
@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_XLA,
    constraints=[_check_device, _check_shape],
)
def _native_xla_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
1917
1918
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1919
) -> torch.Tensor:
1920
1921
    if return_lse:
        raise ValueError("XLA attention backend does not support setting `return_lse=True`.")
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    query = query / math.sqrt(query.shape[-1])
    out = xla_flash_attention(
        q=query,
        k=key,
        v=value,
        causal=is_causal,
    )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName.SAGE,
    constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
1937
    supports_context_parallel=True,
1938
1939
1940
1941
1942
1943
1944
1945
)
def _sage_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
1946
    _parallel_config: Optional["ParallelConfig"] = None,
1947
) -> torch.Tensor:
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
    lse = None
    if _parallel_config is None:
        out = sageattn(
            q=query,
            k=key,
            v=value,
            tensor_layout="NHD",
            is_causal=is_causal,
            sm_scale=scale,
            return_lse=return_lse,
        )
        if return_lse:
            out, lse, *_ = out
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            None,
            0.0,
            is_causal,
            scale,
            False,
            return_lse,
            forward_op=_sage_attention_forward_op,
            backward_op=_sage_attention_backward_op,
            _parallel_config=_parallel_config,
        )
        if return_lse:
            out, lse = out

    return (out, lse) if return_lse else out
1980
1981


1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
@_AttentionBackendRegistry.register(
    AttentionBackendName.SAGE_HUB,
    constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
    supports_context_parallel=False,
)
def _sage_attention_hub(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
    lse = None
    func = _HUB_KERNELS_REGISTRY[AttentionBackendName.SAGE_HUB].kernel_fn
    if _parallel_config is None:
        out = func(
            q=query,
            k=key,
            v=value,
            tensor_layout="NHD",
            is_causal=is_causal,
            sm_scale=scale,
            return_lse=return_lse,
        )
        if return_lse:
            out, lse, *_ = out

    return (out, lse) if return_lse else out


2014
2015
2016
2017
2018
2019
2020
2021
@_AttentionBackendRegistry.register(
    AttentionBackendName.SAGE_VARLEN,
    constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _sage_varlen_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
2022
    attn_mask: Optional[torch.Tensor] = None,
2023
2024
    is_causal: bool = False,
    scale: Optional[float] = None,
2025
2026
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
2027
) -> torch.Tensor:
2028
2029
2030
    if return_lse:
        raise ValueError("Sage varlen backend does not support setting `return_lse=True`.")

2031
2032
2033
2034
2035
2036
    batch_size, seq_len_q, _, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is not None:
        attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)

2037
2038
2039
    (_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
        _prepare_for_flash_attn_or_sage_varlen(
            batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
2040
        )
2041
    )
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079

    key_valid, value_valid = [], []
    for b in range(batch_size):
        valid_len = seqlens_k[b]
        key_valid.append(key[b, :valid_len])
        value_valid.append(value[b, :valid_len])

    query_packed = query.flatten(0, 1)
    key_packed = torch.cat(key_valid, dim=0)
    value_packed = torch.cat(value_valid, dim=0)

    out = sageattn_varlen(
        q=query_packed,
        k=key_packed,
        v=value_packed,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
        is_causal=is_causal,
        sm_scale=scale,
    )
    out = out.unflatten(0, (batch_size, -1))

    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA,
    constraints=[_check_device_cuda_atleast_smXY(9, 0), _check_shape],
)
def _sage_qk_int8_pv_fp8_cuda_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
2080
    _parallel_config: Optional["ParallelConfig"] = None,
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp8_cuda(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA_SM90,
    constraints=[_check_device_cuda_atleast_smXY(9, 0), _check_shape],
)
def _sage_qk_int8_pv_fp8_cuda_sm90_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
2104
    _parallel_config: Optional["ParallelConfig"] = None,
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp8_cuda_sm90(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP16_CUDA,
    constraints=[_check_device_cuda_atleast_smXY(8, 0), _check_shape],
)
def _sage_qk_int8_pv_fp16_cuda_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
2128
    _parallel_config: Optional["ParallelConfig"] = None,
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp16_cuda(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP16_TRITON,
    constraints=[_check_device_cuda_atleast_smXY(8, 0), _check_shape],
)
def _sage_qk_int8_pv_fp16_triton_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
2152
    _parallel_config: Optional["ParallelConfig"] = None,
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp16_triton(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName.XFORMERS,
    constraints=[_check_attn_mask_or_causal, _check_device, _check_shape],
)
def _xformers_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
2178
2179
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
2180
) -> torch.Tensor:
2181
2182
2183
    if return_lse:
        raise ValueError("xformers attention backend does not support setting `return_lse=True`.")

2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
    batch_size, seq_len_q, num_heads_q, _ = query.shape
    _, seq_len_kv, num_heads_kv, _ = key.shape

    if is_causal:
        attn_mask = xops.LowerTriangularMask()
    elif attn_mask is not None:
        if attn_mask.ndim == 2:
            attn_mask = attn_mask.view(attn_mask.size(0), 1, attn_mask.size(1), 1)
        elif attn_mask.ndim != 4:
            raise ValueError("Only 2D and 4D attention masks are supported for xformers attention.")
        attn_mask = attn_mask.expand(batch_size, num_heads_q, seq_len_q, seq_len_kv).type_as(query)

    if enable_gqa:
        if num_heads_q % num_heads_kv != 0:
            raise ValueError("Number of heads in query must be divisible by number of heads in key/value.")
        num_heads_per_group = num_heads_q // num_heads_kv
        query = query.unflatten(2, (num_heads_kv, -1))
        key = key.unflatten(2, (num_heads_kv, -1)).expand(-1, -1, -1, num_heads_per_group, -1)
        value = value.unflatten(2, (num_heads_kv, -1)).expand(-1, -1, -1, num_heads_per_group, -1)

    out = xops.memory_efficient_attention(query, key, value, attn_mask, dropout_p, scale)

    if enable_gqa:
        out = out.flatten(2, 3)

    return out