convert_hunyuan_video1_5_to_diffusers.py 37.2 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
import argparse
import json
import os
import pathlib

import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from safetensors.torch import load_file
from transformers import (
    AutoModel,
    AutoTokenizer,
    SiglipImageProcessor,
    SiglipVisionModel,
    T5EncoderModel,
)

from diffusers import (
    AutoencoderKLHunyuanVideo15,
    ClassifierFreeGuidance,
    FlowMatchEulerDiscreteScheduler,
    HunyuanVideo15ImageToVideoPipeline,
    HunyuanVideo15Pipeline,
    HunyuanVideo15Transformer3DModel,
)


# to convert only transformer
"""
python scripts/convert_hunyuan_video1_5_to_diffusers.py \
    --original_state_dict_repo_id tencent/HunyuanVideo-1.5\
    --output_path /fsx/yiyi/HunyuanVideo-1.5-Diffusers/transformer\
    --transformer_type 480p_t2v
"""

# to convert full pipeline
"""
python scripts/convert_hunyuan_video1_5_to_diffusers.py \
    --original_state_dict_repo_id tencent/HunyuanVideo-1.5\
    --output_path /fsx/yiyi/HunyuanVideo-1.5-Diffusers \
    --save_pipeline \
    --byt5_path /fsx/yiyi/hy15/text_encoder/Glyph-SDXL-v2\
    --transformer_type 480p_t2v
"""


TRANSFORMER_CONFIGS = {
    "480p_t2v": {
        "target_size": 640,
        "task_type": "i2v",
    },
    "720p_t2v": {
        "target_size": 960,
        "task_type": "t2v",
    },
    "720p_i2v": {
        "target_size": 960,
        "task_type": "i2v",
    },
    "480p_t2v_distilled": {
        "target_size": 640,
        "task_type": "t2v",
    },
    "480p_i2v_distilled": {
        "target_size": 640,
        "task_type": "i2v",
    },
    "720p_i2v_distilled": {
        "target_size": 960,
        "task_type": "i2v",
    },
}

SCHEDULER_CONFIGS = {
    "480p_t2v": {
        "shift": 5.0,
    },
    "480p_i2v": {
        "shift": 5.0,
    },
    "720p_t2v": {
        "shift": 9.0,
    },
    "720p_i2v": {
        "shift": 7.0,
    },
    "480p_t2v_distilled": {
        "shift": 5.0,
    },
    "480p_i2v_distilled": {
        "shift": 5.0,
    },
    "720p_i2v_distilled": {
        "shift": 7.0,
    },
}

GUIDANCE_CONFIGS = {
    "480p_t2v": {
        "guidance_scale": 6.0,
    },
    "480p_i2v": {
        "guidance_scale": 6.0,
    },
    "720p_t2v": {
        "guidance_scale": 6.0,
    },
    "720p_i2v": {
        "guidance_scale": 6.0,
    },
    "480p_t2v_distilled": {
        "guidance_scale": 1.0,
    },
    "480p_i2v_distilled": {
        "guidance_scale": 1.0,
    },
    "720p_i2v_distilled": {
        "guidance_scale": 1.0,
    },
}


def swap_scale_shift(weight):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight


def convert_hyvideo15_transformer_to_diffusers(original_state_dict):
    """
    Convert HunyuanVideo 1.5 original checkpoint to Diffusers format.
    """
    converted_state_dict = {}

    # 1. time_embed.timestep_embedder <- time_in
    converted_state_dict["time_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
        "time_in.mlp.0.weight"
    )
    converted_state_dict["time_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("time_in.mlp.0.bias")
    converted_state_dict["time_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
        "time_in.mlp.2.weight"
    )
    converted_state_dict["time_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("time_in.mlp.2.bias")

    # 2. context_embedder.time_text_embed.timestep_embedder <- txt_in.t_embedder
    converted_state_dict["context_embedder.time_text_embed.timestep_embedder.linear_1.weight"] = (
        original_state_dict.pop("txt_in.t_embedder.mlp.0.weight")
    )
    converted_state_dict["context_embedder.time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
        "txt_in.t_embedder.mlp.0.bias"
    )
    converted_state_dict["context_embedder.time_text_embed.timestep_embedder.linear_2.weight"] = (
        original_state_dict.pop("txt_in.t_embedder.mlp.2.weight")
    )
    converted_state_dict["context_embedder.time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
        "txt_in.t_embedder.mlp.2.bias"
    )

    # 3. context_embedder.time_text_embed.text_embedder <- txt_in.c_embedder
    converted_state_dict["context_embedder.time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
        "txt_in.c_embedder.linear_1.weight"
    )
    converted_state_dict["context_embedder.time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
        "txt_in.c_embedder.linear_1.bias"
    )
    converted_state_dict["context_embedder.time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
        "txt_in.c_embedder.linear_2.weight"
    )
    converted_state_dict["context_embedder.time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
        "txt_in.c_embedder.linear_2.bias"
    )

    # 4. context_embedder.proj_in <- txt_in.input_embedder
    converted_state_dict["context_embedder.proj_in.weight"] = original_state_dict.pop("txt_in.input_embedder.weight")
    converted_state_dict["context_embedder.proj_in.bias"] = original_state_dict.pop("txt_in.input_embedder.bias")

    # 5. context_embedder.token_refiner <- txt_in.individual_token_refiner
    num_refiner_blocks = 2
    for i in range(num_refiner_blocks):
        block_prefix = f"context_embedder.token_refiner.refiner_blocks.{i}."
        orig_prefix = f"txt_in.individual_token_refiner.blocks.{i}."

        # norm1
        converted_state_dict[f"{block_prefix}norm1.weight"] = original_state_dict.pop(f"{orig_prefix}norm1.weight")
        converted_state_dict[f"{block_prefix}norm1.bias"] = original_state_dict.pop(f"{orig_prefix}norm1.bias")

        # Split self_attn_qkv into to_q, to_k, to_v
        qkv_weight = original_state_dict.pop(f"{orig_prefix}self_attn_qkv.weight")
        qkv_bias = original_state_dict.pop(f"{orig_prefix}self_attn_qkv.bias")
        q, k, v = torch.chunk(qkv_weight, 3, dim=0)
        q_bias, k_bias, v_bias = torch.chunk(qkv_bias, 3, dim=0)

        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = q
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = q_bias
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = k
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = k_bias
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = v
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = v_bias

        # self_attn_proj -> attn.to_out.0
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = original_state_dict.pop(
            f"{orig_prefix}self_attn_proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = original_state_dict.pop(
            f"{orig_prefix}self_attn_proj.bias"
        )

        # norm2
        converted_state_dict[f"{block_prefix}norm2.weight"] = original_state_dict.pop(f"{orig_prefix}norm2.weight")
        converted_state_dict[f"{block_prefix}norm2.bias"] = original_state_dict.pop(f"{orig_prefix}norm2.bias")

        # mlp -> ff
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = original_state_dict.pop(
            f"{orig_prefix}mlp.fc1.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = original_state_dict.pop(
            f"{orig_prefix}mlp.fc1.bias"
        )
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = original_state_dict.pop(
            f"{orig_prefix}mlp.fc2.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = original_state_dict.pop(f"{orig_prefix}mlp.fc2.bias")

        # adaLN_modulation -> norm_out
        converted_state_dict[f"{block_prefix}norm_out.linear.weight"] = original_state_dict.pop(
            f"{orig_prefix}adaLN_modulation.1.weight"
        )
        converted_state_dict[f"{block_prefix}norm_out.linear.bias"] = original_state_dict.pop(
            f"{orig_prefix}adaLN_modulation.1.bias"
        )

    # 6. context_embedder_2 <- byt5_in
    converted_state_dict["context_embedder_2.norm.weight"] = original_state_dict.pop("byt5_in.layernorm.weight")
    converted_state_dict["context_embedder_2.norm.bias"] = original_state_dict.pop("byt5_in.layernorm.bias")
    converted_state_dict["context_embedder_2.linear_1.weight"] = original_state_dict.pop("byt5_in.fc1.weight")
    converted_state_dict["context_embedder_2.linear_1.bias"] = original_state_dict.pop("byt5_in.fc1.bias")
    converted_state_dict["context_embedder_2.linear_2.weight"] = original_state_dict.pop("byt5_in.fc2.weight")
    converted_state_dict["context_embedder_2.linear_2.bias"] = original_state_dict.pop("byt5_in.fc2.bias")
    converted_state_dict["context_embedder_2.linear_3.weight"] = original_state_dict.pop("byt5_in.fc3.weight")
    converted_state_dict["context_embedder_2.linear_3.bias"] = original_state_dict.pop("byt5_in.fc3.bias")

    # 7. image_embedder <- vision_in
    converted_state_dict["image_embedder.norm_in.weight"] = original_state_dict.pop("vision_in.proj.0.weight")
    converted_state_dict["image_embedder.norm_in.bias"] = original_state_dict.pop("vision_in.proj.0.bias")
    converted_state_dict["image_embedder.linear_1.weight"] = original_state_dict.pop("vision_in.proj.1.weight")
    converted_state_dict["image_embedder.linear_1.bias"] = original_state_dict.pop("vision_in.proj.1.bias")
    converted_state_dict["image_embedder.linear_2.weight"] = original_state_dict.pop("vision_in.proj.3.weight")
    converted_state_dict["image_embedder.linear_2.bias"] = original_state_dict.pop("vision_in.proj.3.bias")
    converted_state_dict["image_embedder.norm_out.weight"] = original_state_dict.pop("vision_in.proj.4.weight")
    converted_state_dict["image_embedder.norm_out.bias"] = original_state_dict.pop("vision_in.proj.4.bias")

    # 8. x_embedder <- img_in
    converted_state_dict["x_embedder.proj.weight"] = original_state_dict.pop("img_in.proj.weight")
    converted_state_dict["x_embedder.proj.bias"] = original_state_dict.pop("img_in.proj.bias")

    # 9. cond_type_embed <- cond_type_embedding
    converted_state_dict["cond_type_embed.weight"] = original_state_dict.pop("cond_type_embedding.weight")

    # 10. transformer_blocks <- double_blocks
    num_layers = 54
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        orig_prefix = f"double_blocks.{i}."

        # norm1 (img_mod)
        converted_state_dict[f"{block_prefix}norm1.linear.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_mod.linear.weight"
        )
        converted_state_dict[f"{block_prefix}norm1.linear.bias"] = original_state_dict.pop(
            f"{orig_prefix}img_mod.linear.bias"
        )

        # norm1_context (txt_mod)
        converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_mod.linear.weight"
        )
        converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = original_state_dict.pop(
            f"{orig_prefix}txt_mod.linear.bias"
        )

        # img attention (to_q, to_k, to_v)
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_q.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_q.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_k.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_k.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_v.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_v.bias"
        )

        # img attention qk norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_q_norm.weight"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_k_norm.weight"
        )

        # img attention output projection
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = original_state_dict.pop(
            f"{orig_prefix}img_attn_proj.bias"
        )

        # txt attention (add_q_proj, add_k_proj, add_v_proj)
        converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_q.weight"
        )
        converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_q.bias"
        )
        converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_k.weight"
        )
        converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_k.bias"
        )
        converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_v.weight"
        )
        converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_v.bias"
        )

        # txt attention qk norm
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_q_norm.weight"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_k_norm.weight"
        )

        # txt attention output projection
        converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = original_state_dict.pop(
            f"{orig_prefix}txt_attn_proj.bias"
        )

        # norm2 and norm2_context (these don't have weights in the original, they're LayerNorm with elementwise_affine=False)
        # So we skip them

        # img_mlp -> ff
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_mlp.fc1.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = original_state_dict.pop(
            f"{orig_prefix}img_mlp.fc1.bias"
        )
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = original_state_dict.pop(
            f"{orig_prefix}img_mlp.fc2.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = original_state_dict.pop(
            f"{orig_prefix}img_mlp.fc2.bias"
        )

        # txt_mlp -> ff_context
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_mlp.fc1.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = original_state_dict.pop(
            f"{orig_prefix}txt_mlp.fc1.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = original_state_dict.pop(
            f"{orig_prefix}txt_mlp.fc2.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = original_state_dict.pop(
            f"{orig_prefix}txt_mlp.fc2.bias"
        )

    # 11. norm_out and proj_out <- final_layer
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        original_state_dict.pop("final_layer.adaLN_modulation.1.weight")
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        original_state_dict.pop("final_layer.adaLN_modulation.1.bias")
    )
    converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")

    return converted_state_dict


def convert_hunyuan_video_15_vae_checkpoint_to_diffusers(
    original_state_dict, block_out_channels=[128, 256, 512, 1024, 1024], layers_per_block=2
):
    converted = {}

    # 1. Encoder
    # 1.1 conv_in
    converted["encoder.conv_in.conv.weight"] = original_state_dict.pop("encoder.conv_in.conv.weight")
    converted["encoder.conv_in.conv.bias"] = original_state_dict.pop("encoder.conv_in.conv.bias")

    # 1.2 Down blocks
    for down_block_index in range(len(block_out_channels)):  # 0 to 4
        # ResNet blocks
        for resnet_block_index in range(layers_per_block):  # 0 to 1
            converted[f"encoder.down_blocks.{down_block_index}.resnets.{resnet_block_index}.norm1.gamma"] = (
                original_state_dict.pop(f"encoder.down.{down_block_index}.block.{resnet_block_index}.norm1.gamma")
            )
            converted[f"encoder.down_blocks.{down_block_index}.resnets.{resnet_block_index}.conv1.conv.weight"] = (
                original_state_dict.pop(
                    f"encoder.down.{down_block_index}.block.{resnet_block_index}.conv1.conv.weight"
                )
            )
            converted[f"encoder.down_blocks.{down_block_index}.resnets.{resnet_block_index}.conv1.conv.bias"] = (
                original_state_dict.pop(f"encoder.down.{down_block_index}.block.{resnet_block_index}.conv1.conv.bias")
            )
            converted[f"encoder.down_blocks.{down_block_index}.resnets.{resnet_block_index}.norm2.gamma"] = (
                original_state_dict.pop(f"encoder.down.{down_block_index}.block.{resnet_block_index}.norm2.gamma")
            )
            converted[f"encoder.down_blocks.{down_block_index}.resnets.{resnet_block_index}.conv2.conv.weight"] = (
                original_state_dict.pop(
                    f"encoder.down.{down_block_index}.block.{resnet_block_index}.conv2.conv.weight"
                )
            )
            converted[f"encoder.down_blocks.{down_block_index}.resnets.{resnet_block_index}.conv2.conv.bias"] = (
                original_state_dict.pop(f"encoder.down.{down_block_index}.block.{resnet_block_index}.conv2.conv.bias")
            )

        # Downsample (if exists)
        if f"encoder.down.{down_block_index}.downsample.conv.conv.weight" in original_state_dict:
            converted[f"encoder.down_blocks.{down_block_index}.downsamplers.0.conv.conv.weight"] = (
                original_state_dict.pop(f"encoder.down.{down_block_index}.downsample.conv.conv.weight")
            )
            converted[f"encoder.down_blocks.{down_block_index}.downsamplers.0.conv.conv.bias"] = (
                original_state_dict.pop(f"encoder.down.{down_block_index}.downsample.conv.conv.bias")
            )

    # 1.3 Mid block
    converted["encoder.mid_block.resnets.0.norm1.gamma"] = original_state_dict.pop("encoder.mid.block_1.norm1.gamma")
    converted["encoder.mid_block.resnets.0.conv1.conv.weight"] = original_state_dict.pop(
        "encoder.mid.block_1.conv1.conv.weight"
    )
    converted["encoder.mid_block.resnets.0.conv1.conv.bias"] = original_state_dict.pop(
        "encoder.mid.block_1.conv1.conv.bias"
    )
    converted["encoder.mid_block.resnets.0.norm2.gamma"] = original_state_dict.pop("encoder.mid.block_1.norm2.gamma")
    converted["encoder.mid_block.resnets.0.conv2.conv.weight"] = original_state_dict.pop(
        "encoder.mid.block_1.conv2.conv.weight"
    )
    converted["encoder.mid_block.resnets.0.conv2.conv.bias"] = original_state_dict.pop(
        "encoder.mid.block_1.conv2.conv.bias"
    )

    converted["encoder.mid_block.resnets.1.norm1.gamma"] = original_state_dict.pop("encoder.mid.block_2.norm1.gamma")
    converted["encoder.mid_block.resnets.1.conv1.conv.weight"] = original_state_dict.pop(
        "encoder.mid.block_2.conv1.conv.weight"
    )
    converted["encoder.mid_block.resnets.1.conv1.conv.bias"] = original_state_dict.pop(
        "encoder.mid.block_2.conv1.conv.bias"
    )
    converted["encoder.mid_block.resnets.1.norm2.gamma"] = original_state_dict.pop("encoder.mid.block_2.norm2.gamma")
    converted["encoder.mid_block.resnets.1.conv2.conv.weight"] = original_state_dict.pop(
        "encoder.mid.block_2.conv2.conv.weight"
    )
    converted["encoder.mid_block.resnets.1.conv2.conv.bias"] = original_state_dict.pop(
        "encoder.mid.block_2.conv2.conv.bias"
    )

    # Attention block
    converted["encoder.mid_block.attentions.0.norm.gamma"] = original_state_dict.pop("encoder.mid.attn_1.norm.gamma")
    converted["encoder.mid_block.attentions.0.to_q.weight"] = original_state_dict.pop("encoder.mid.attn_1.q.weight")
    converted["encoder.mid_block.attentions.0.to_q.bias"] = original_state_dict.pop("encoder.mid.attn_1.q.bias")
    converted["encoder.mid_block.attentions.0.to_k.weight"] = original_state_dict.pop("encoder.mid.attn_1.k.weight")
    converted["encoder.mid_block.attentions.0.to_k.bias"] = original_state_dict.pop("encoder.mid.attn_1.k.bias")
    converted["encoder.mid_block.attentions.0.to_v.weight"] = original_state_dict.pop("encoder.mid.attn_1.v.weight")
    converted["encoder.mid_block.attentions.0.to_v.bias"] = original_state_dict.pop("encoder.mid.attn_1.v.bias")
    converted["encoder.mid_block.attentions.0.proj_out.weight"] = original_state_dict.pop(
        "encoder.mid.attn_1.proj_out.weight"
    )
    converted["encoder.mid_block.attentions.0.proj_out.bias"] = original_state_dict.pop(
        "encoder.mid.attn_1.proj_out.bias"
    )

    # 1.4 Encoder output
    converted["encoder.norm_out.gamma"] = original_state_dict.pop("encoder.norm_out.gamma")
    converted["encoder.conv_out.conv.weight"] = original_state_dict.pop("encoder.conv_out.conv.weight")
    converted["encoder.conv_out.conv.bias"] = original_state_dict.pop("encoder.conv_out.conv.bias")

    # 2. Decoder
    # 2.1 conv_in
    converted["decoder.conv_in.conv.weight"] = original_state_dict.pop("decoder.conv_in.conv.weight")
    converted["decoder.conv_in.conv.bias"] = original_state_dict.pop("decoder.conv_in.conv.bias")

    # 2.2 Mid block
    converted["decoder.mid_block.resnets.0.norm1.gamma"] = original_state_dict.pop("decoder.mid.block_1.norm1.gamma")
    converted["decoder.mid_block.resnets.0.conv1.conv.weight"] = original_state_dict.pop(
        "decoder.mid.block_1.conv1.conv.weight"
    )
    converted["decoder.mid_block.resnets.0.conv1.conv.bias"] = original_state_dict.pop(
        "decoder.mid.block_1.conv1.conv.bias"
    )
    converted["decoder.mid_block.resnets.0.norm2.gamma"] = original_state_dict.pop("decoder.mid.block_1.norm2.gamma")
    converted["decoder.mid_block.resnets.0.conv2.conv.weight"] = original_state_dict.pop(
        "decoder.mid.block_1.conv2.conv.weight"
    )
    converted["decoder.mid_block.resnets.0.conv2.conv.bias"] = original_state_dict.pop(
        "decoder.mid.block_1.conv2.conv.bias"
    )

    converted["decoder.mid_block.resnets.1.norm1.gamma"] = original_state_dict.pop("decoder.mid.block_2.norm1.gamma")
    converted["decoder.mid_block.resnets.1.conv1.conv.weight"] = original_state_dict.pop(
        "decoder.mid.block_2.conv1.conv.weight"
    )
    converted["decoder.mid_block.resnets.1.conv1.conv.bias"] = original_state_dict.pop(
        "decoder.mid.block_2.conv1.conv.bias"
    )
    converted["decoder.mid_block.resnets.1.norm2.gamma"] = original_state_dict.pop("decoder.mid.block_2.norm2.gamma")
    converted["decoder.mid_block.resnets.1.conv2.conv.weight"] = original_state_dict.pop(
        "decoder.mid.block_2.conv2.conv.weight"
    )
    converted["decoder.mid_block.resnets.1.conv2.conv.bias"] = original_state_dict.pop(
        "decoder.mid.block_2.conv2.conv.bias"
    )

    # Decoder attention block
    converted["decoder.mid_block.attentions.0.norm.gamma"] = original_state_dict.pop("decoder.mid.attn_1.norm.gamma")
    converted["decoder.mid_block.attentions.0.to_q.weight"] = original_state_dict.pop("decoder.mid.attn_1.q.weight")
    converted["decoder.mid_block.attentions.0.to_q.bias"] = original_state_dict.pop("decoder.mid.attn_1.q.bias")
    converted["decoder.mid_block.attentions.0.to_k.weight"] = original_state_dict.pop("decoder.mid.attn_1.k.weight")
    converted["decoder.mid_block.attentions.0.to_k.bias"] = original_state_dict.pop("decoder.mid.attn_1.k.bias")
    converted["decoder.mid_block.attentions.0.to_v.weight"] = original_state_dict.pop("decoder.mid.attn_1.v.weight")
    converted["decoder.mid_block.attentions.0.to_v.bias"] = original_state_dict.pop("decoder.mid.attn_1.v.bias")
    converted["decoder.mid_block.attentions.0.proj_out.weight"] = original_state_dict.pop(
        "decoder.mid.attn_1.proj_out.weight"
    )
    converted["decoder.mid_block.attentions.0.proj_out.bias"] = original_state_dict.pop(
        "decoder.mid.attn_1.proj_out.bias"
    )

    # 2.3 Up blocks
    for up_block_index in range(len(block_out_channels)):  # 0 to 5
        # ResNet blocks
        for resnet_block_index in range(layers_per_block + 1):  # 0 to 2 (decoder has 3 resnets per level)
            converted[f"decoder.up_blocks.{up_block_index}.resnets.{resnet_block_index}.norm1.gamma"] = (
                original_state_dict.pop(f"decoder.up.{up_block_index}.block.{resnet_block_index}.norm1.gamma")
            )
            converted[f"decoder.up_blocks.{up_block_index}.resnets.{resnet_block_index}.conv1.conv.weight"] = (
                original_state_dict.pop(f"decoder.up.{up_block_index}.block.{resnet_block_index}.conv1.conv.weight")
            )
            converted[f"decoder.up_blocks.{up_block_index}.resnets.{resnet_block_index}.conv1.conv.bias"] = (
                original_state_dict.pop(f"decoder.up.{up_block_index}.block.{resnet_block_index}.conv1.conv.bias")
            )
            converted[f"decoder.up_blocks.{up_block_index}.resnets.{resnet_block_index}.norm2.gamma"] = (
                original_state_dict.pop(f"decoder.up.{up_block_index}.block.{resnet_block_index}.norm2.gamma")
            )
            converted[f"decoder.up_blocks.{up_block_index}.resnets.{resnet_block_index}.conv2.conv.weight"] = (
                original_state_dict.pop(f"decoder.up.{up_block_index}.block.{resnet_block_index}.conv2.conv.weight")
            )
            converted[f"decoder.up_blocks.{up_block_index}.resnets.{resnet_block_index}.conv2.conv.bias"] = (
                original_state_dict.pop(f"decoder.up.{up_block_index}.block.{resnet_block_index}.conv2.conv.bias")
            )

        # Upsample (if exists)
        if f"decoder.up.{up_block_index}.upsample.conv.conv.weight" in original_state_dict:
            converted[f"decoder.up_blocks.{up_block_index}.upsamplers.0.conv.conv.weight"] = original_state_dict.pop(
                f"decoder.up.{up_block_index}.upsample.conv.conv.weight"
            )
            converted[f"decoder.up_blocks.{up_block_index}.upsamplers.0.conv.conv.bias"] = original_state_dict.pop(
                f"decoder.up.{up_block_index}.upsample.conv.conv.bias"
            )

    # 2.4 Decoder output
    converted["decoder.norm_out.gamma"] = original_state_dict.pop("decoder.norm_out.gamma")
    converted["decoder.conv_out.conv.weight"] = original_state_dict.pop("decoder.conv_out.conv.weight")
    converted["decoder.conv_out.conv.bias"] = original_state_dict.pop("decoder.conv_out.conv.bias")

    return converted


def load_sharded_safetensors(dir: pathlib.Path):
    file_paths = list(dir.glob("diffusion_pytorch_model*.safetensors"))
    state_dict = {}
    for path in file_paths:
        state_dict.update(load_file(path))
    return state_dict


def load_original_transformer_state_dict(args):
    if args.original_state_dict_repo_id is not None:
        model_dir = snapshot_download(
            args.original_state_dict_repo_id,
            repo_type="model",
            allow_patterns="transformer/" + args.transformer_type + "/*",
        )
    elif args.original_state_dict_folder is not None:
        model_dir = pathlib.Path(args.original_state_dict_folder)
    else:
        raise ValueError("Please provide either `original_state_dict_repo_id` or `original_state_dict_folder`")
    model_dir = pathlib.Path(model_dir)
    model_dir = model_dir / "transformer" / args.transformer_type
    return load_sharded_safetensors(model_dir)


def load_original_vae_state_dict(args):
    if args.original_state_dict_repo_id is not None:
        ckpt_path = hf_hub_download(
            repo_id=args.original_state_dict_repo_id, filename="vae/diffusion_pytorch_model.safetensors"
        )
    elif args.original_state_dict_folder is not None:
        model_dir = pathlib.Path(args.original_state_dict_folder)
        ckpt_path = model_dir / "vae/diffusion_pytorch_model.safetensors"
    else:
        raise ValueError("Please provide either `original_state_dict_repo_id` or `original_state_dict_folder`")

    original_state_dict = load_file(ckpt_path)
    return original_state_dict


def convert_transformer(args):
    original_state_dict = load_original_transformer_state_dict(args)

    config = TRANSFORMER_CONFIGS[args.transformer_type]
    with init_empty_weights():
        transformer = HunyuanVideo15Transformer3DModel(**config)
    state_dict = convert_hyvideo15_transformer_to_diffusers(original_state_dict)
    transformer.load_state_dict(state_dict, strict=True, assign=True)

    return transformer


def convert_vae(args):
    original_state_dict = load_original_vae_state_dict(args)
    with init_empty_weights():
        vae = AutoencoderKLHunyuanVideo15()
    state_dict = convert_hunyuan_video_15_vae_checkpoint_to_diffusers(original_state_dict)
    vae.load_state_dict(state_dict, strict=True, assign=True)
    return vae


def load_mllm():
    print(" loading from Qwen/Qwen2.5-VL-7B-Instruct")
    text_encoder = AutoModel.from_pretrained(
        "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True
    )
    if hasattr(text_encoder, "language_model"):
        text_encoder = text_encoder.language_model
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", padding_side="right")
    return text_encoder, tokenizer


# copied from https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5/blob/910da2a829c484ea28982e8cff3bbc2cacdf1681/hyvideo/models/text_encoders/byT5/__init__.py#L89
def add_special_token(
    tokenizer,
    text_encoder,
    add_color=True,
    add_font=True,
    multilingual=True,
    color_ann_path="assets/color_idx.json",
    font_ann_path="assets/multilingual_10-lang_idx.json",
):
    """
    Add special tokens for color and font to tokenizer and text encoder.

    Args:
        tokenizer: Huggingface tokenizer.
        text_encoder: Huggingface T5 encoder.
        add_color (bool): Whether to add color tokens.
        add_font (bool): Whether to add font tokens.
        color_ann_path (str): Path to color annotation JSON.
        font_ann_path (str): Path to font annotation JSON.
        multilingual (bool): Whether to use multilingual font tokens.
    """
    with open(font_ann_path, "r") as f:
        idx_font_dict = json.load(f)
    with open(color_ann_path, "r") as f:
        idx_color_dict = json.load(f)

    if multilingual:
        font_token = [f"<{font_code[:2]}-font-{idx_font_dict[font_code]}>" for font_code in idx_font_dict]
    else:
        font_token = [f"<font-{i}>" for i in range(len(idx_font_dict))]
    color_token = [f"<color-{i}>" for i in range(len(idx_color_dict))]
    additional_special_tokens = []
    if add_color:
        additional_special_tokens += color_token
    if add_font:
        additional_special_tokens += font_token

    tokenizer.add_tokens(additional_special_tokens, special_tokens=True)
    # Set mean_resizing=False to avoid PyTorch LAPACK dependency
    text_encoder.resize_token_embeddings(len(tokenizer), mean_resizing=False)


def load_byt5(args):
    """
    Load ByT5 encoder with Glyph-SDXL-v2 weights and save in HuggingFace format.
    """

    # 1. Load base tokenizer and encoder
    tokenizer = AutoTokenizer.from_pretrained("google/byt5-small")

    # Load as T5EncoderModel
    encoder = T5EncoderModel.from_pretrained("google/byt5-small")

    byt5_checkpoint_path = os.path.join(args.byt5_path, "checkpoints/byt5_model.pt")
    color_ann_path = os.path.join(args.byt5_path, "assets/color_idx.json")
    font_ann_path = os.path.join(args.byt5_path, "assets/multilingual_10-lang_idx.json")

    # 2. Add special tokens
    add_special_token(
        tokenizer=tokenizer,
        text_encoder=encoder,
        add_color=True,
        add_font=True,
        color_ann_path=color_ann_path,
        font_ann_path=font_ann_path,
        multilingual=True,
    )

    # 3. Load Glyph-SDXL-v2 checkpoint
    print(f"\n3. Loading Glyph-SDXL-v2 checkpoint: {byt5_checkpoint_path}")
    checkpoint = torch.load(byt5_checkpoint_path, map_location="cpu")

    # Handle different checkpoint formats
    if "state_dict" in checkpoint:
        state_dict = checkpoint["state_dict"]
    else:
        state_dict = checkpoint

    # add 'encoder.' prefix to the keys
    # Remove 'module.text_tower.encoder.' prefix if present
    cleaned_state_dict = {}
    for key, value in state_dict.items():
        if key.startswith("module.text_tower.encoder."):
            new_key = "encoder." + key[len("module.text_tower.encoder.") :]
            cleaned_state_dict[new_key] = value
        else:
            new_key = "encoder." + key
            cleaned_state_dict[new_key] = value

    # 4. Load weights
    missing_keys, unexpected_keys = encoder.load_state_dict(cleaned_state_dict, strict=False)
    if unexpected_keys:
        raise ValueError(f"Unexpected keys: {unexpected_keys}")
    if "shared.weight" in missing_keys:
        print("  Missing shared.weight as expected")
        missing_keys.remove("shared.weight")
    if missing_keys:
        raise ValueError(f"Missing keys: {missing_keys}")

    return encoder, tokenizer


def load_siglip():
    image_encoder = SiglipVisionModel.from_pretrained(
        "black-forest-labs/FLUX.1-Redux-dev", subfolder="image_encoder", torch_dtype=torch.bfloat16
    )
    feature_extractor = SiglipImageProcessor.from_pretrained(
        "black-forest-labs/FLUX.1-Redux-dev", subfolder="feature_extractor"
    )
    return image_encoder, feature_extractor


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--original_state_dict_repo_id", type=str, default=None, help="Path to original hub_id for the model"
    )
    parser.add_argument(
        "--original_state_dict_folder", type=str, default=None, help="Local folder name of the original state dict"
    )
    parser.add_argument("--output_path", type=str, required=True, help="Path where converted model(s) should be saved")
    parser.add_argument("--transformer_type", type=str, default="480p_i2v", choices=list(TRANSFORMER_CONFIGS.keys()))
    parser.add_argument(
        "--byt5_path",
        type=str,
        default=None,
        help=(
            "path to the downloaded byt5 checkpoint & assets. "
            "Note: They use Glyph-SDXL-v2 as byt5 encoder. You can download from modelscope like: "
            "`modelscope download --model AI-ModelScope/Glyph-SDXL-v2 --local_dir ./ckpts/text_encoder/Glyph-SDXL-v2` "
            "or manually download following the instructions on "
            "https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5/blob/910da2a829c484ea28982e8cff3bbc2cacdf1681/checkpoints-download.md. "
            "The path should point to the Glyph-SDXL-v2 folder which should contain an `assets` folder and a `checkpoints` folder, "
            "like: Glyph-SDXL-v2/assets/... and Glyph-SDXL-v2/checkpoints/byt5_model.pt"
        ),
    )
    parser.add_argument("--save_pipeline", action="store_true")
    return parser.parse_args()


if __name__ == "__main__":
    args = get_args()

    if args.save_pipeline and args.byt5_path is None:
        raise ValueError("Please provide --byt5_path when saving pipeline")

    transformer = None

    transformer = convert_transformer(args)
    if not args.save_pipeline:
        transformer.save_pretrained(args.output_path, safe_serialization=True)
    else:
        task_type = transformer.config.task_type

        vae = convert_vae(args)

        text_encoder, tokenizer = load_mllm()
        text_encoder_2, tokenizer_2 = load_byt5(args)

        flow_shift = SCHEDULER_CONFIGS[args.transformer_type]["shift"]
        scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)

        guidance_scale = GUIDANCE_CONFIGS[args.transformer_type]["guidance_scale"]
        guider = ClassifierFreeGuidance(guidance_scale=guidance_scale)

        if task_type == "i2v":
            image_encoder, feature_extractor = load_siglip()
            pipeline = HunyuanVideo15ImageToVideoPipeline(
                vae=vae,
                text_encoder=text_encoder,
                text_encoder_2=text_encoder_2,
                tokenizer=tokenizer,
                tokenizer_2=tokenizer_2,
                transformer=transformer,
                guider=guider,
                scheduler=scheduler,
                image_encoder=image_encoder,
                feature_extractor=feature_extractor,
            )
        elif task_type == "t2v":
            pipeline = HunyuanVideo15Pipeline(
                vae=vae,
                text_encoder=text_encoder,
                text_encoder_2=text_encoder_2,
                tokenizer=tokenizer,
                tokenizer_2=tokenizer_2,
                transformer=transformer,
                guider=guider,
                scheduler=scheduler,
            )
        else:
            raise ValueError(f"Task type {task_type} is not supported")

        pipeline.save_pretrained(args.output_path, safe_serialization=True)