pipeline_flux.py 47.7 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
Sayak Paul's avatar
Sayak Paul committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
hlky's avatar
hlky committed
20
21
22
23
24
25
26
27
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
    T5EncoderModel,
    T5TokenizerFast,
)
Sayak Paul's avatar
Sayak Paul committed
28

hlky's avatar
hlky committed
29
30
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
31
from ...models import AutoencoderKL, FluxTransformer2DModel
Sayak Paul's avatar
Sayak Paul committed
32
33
34
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import (
    USE_PEFT_BACKEND,
35
    deprecate,
Sayak Paul's avatar
Sayak Paul committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import FluxPipelineOutput


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import FluxPipeline

        >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
        >>> pipe.to("cuda")
        >>> prompt = "A cat holding a sign that says hello world"
        >>> # Depending on the variant being used, the pipeline call will slightly vary.
        >>> # Refer to the pipeline documentation for more details.
        >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
        >>> image.save("flux.png")
        ```
"""


def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
79
    max_shift: float = 1.15,
Sayak Paul's avatar
Sayak Paul committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
96
    r"""
Sayak Paul's avatar
Sayak Paul committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


147
148
149
150
151
class FluxPipeline(
    DiffusionPipeline,
    FluxLoraLoaderMixin,
    FromSingleFileMixin,
    TextualInversionLoaderMixin,
hlky's avatar
hlky committed
152
    FluxIPAdapterMixin,
153
):
Sayak Paul's avatar
Sayak Paul committed
154
155
156
157
158
159
160
161
162
163
164
165
    r"""
    The Flux pipeline for text-to-image generation.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Args:
        transformer ([`FluxTransformer2DModel`]):
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
166
167
168
169
170
171
        text_encoder ([`CLIPTextModel`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([`T5EncoderModel`]):
            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
            the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
Sayak Paul's avatar
Sayak Paul committed
172
173
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
174
175
            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`T5TokenizerFast`):
Sayak Paul's avatar
Sayak Paul committed
176
            Second Tokenizer of class
177
            [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
Sayak Paul's avatar
Sayak Paul committed
178
179
    """

hlky's avatar
hlky committed
180
181
    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
    _optional_components = ["image_encoder", "feature_extractor"]
Sayak Paul's avatar
Sayak Paul committed
182
183
184
185
186
187
188
189
190
191
192
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        text_encoder_2: T5EncoderModel,
        tokenizer_2: T5TokenizerFast,
        transformer: FluxTransformer2DModel,
hlky's avatar
hlky committed
193
194
        image_encoder: CLIPVisionModelWithProjection = None,
        feature_extractor: CLIPImageProcessor = None,
Sayak Paul's avatar
Sayak Paul committed
195
196
197
198
199
200
201
202
203
204
205
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
hlky's avatar
hlky committed
206
207
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
Sayak Paul's avatar
Sayak Paul committed
208
        )
hlky's avatar
hlky committed
209
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
Dhruv Nair's avatar
Dhruv Nair committed
210
211
212
        # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
        # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
Sayak Paul's avatar
Sayak Paul committed
213
214
215
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
216
        self.default_sample_size = 128
Sayak Paul's avatar
Sayak Paul committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

232
233
234
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)

Sayak Paul's avatar
Sayak Paul committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds

    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
    ):
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

278
279
280
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

Sayak Paul's avatar
Sayak Paul committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds.pooler_output
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
306
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
Sayak Paul's avatar
Sayak Paul committed
307
308
309
310
311
312
313
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
314
        prompt_2: Optional[Union[str, List[str]]] = None,
Sayak Paul's avatar
Sayak Paul committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        max_sequence_length: int = 512,
        lora_scale: Optional[float] = None,
    ):
        r"""

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in all text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
Sayak Paul's avatar
Sayak Paul committed
347
        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
Sayak Paul's avatar
Sayak Paul committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )

        if self.text_encoder is not None:
Sayak Paul's avatar
Sayak Paul committed
376
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
Sayak Paul's avatar
Sayak Paul committed
377
378
379
380
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
Sayak Paul's avatar
Sayak Paul committed
381
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
Sayak Paul's avatar
Sayak Paul committed
382
383
384
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

Sayak Paul's avatar
Sayak Paul committed
385
        dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
386
        text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
Sayak Paul's avatar
Sayak Paul committed
387
388
389

        return prompt_embeds, pooled_prompt_embeds, text_ids

hlky's avatar
hlky committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def encode_image(self, image, device, num_images_per_prompt):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        image_embeds = self.image_encoder(image).image_embeds
        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        return image_embeds

    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
    ):
        image_embeds = []
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

409
            if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
hlky's avatar
hlky committed
410
                raise ValueError(
411
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
hlky's avatar
hlky committed
412
413
                )

414
            for single_ip_adapter_image in ip_adapter_image:
hlky's avatar
hlky committed
415
416
417
                single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
                image_embeds.append(single_image_embeds[None, :])
        else:
418
419
420
421
422
423
424
425
            if not isinstance(ip_adapter_image_embeds, list):
                ip_adapter_image_embeds = [ip_adapter_image_embeds]

            if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
                raise ValueError(
                    f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
                )

hlky's avatar
hlky committed
426
427
428
429
            for single_image_embeds in ip_adapter_image_embeds:
                image_embeds.append(single_image_embeds)

        ip_adapter_image_embeds = []
430
        for single_image_embeds in image_embeds:
hlky's avatar
hlky committed
431
432
433
434
435
436
            single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds

Sayak Paul's avatar
Sayak Paul committed
437
438
439
440
441
442
    def check_inputs(
        self,
        prompt,
        prompt_2,
        height,
        width,
hlky's avatar
hlky committed
443
444
        negative_prompt=None,
        negative_prompt_2=None,
Sayak Paul's avatar
Sayak Paul committed
445
        prompt_embeds=None,
hlky's avatar
hlky committed
446
        negative_prompt_embeds=None,
Sayak Paul's avatar
Sayak Paul committed
447
        pooled_prompt_embeds=None,
hlky's avatar
hlky committed
448
        negative_pooled_prompt_embeds=None,
Sayak Paul's avatar
Sayak Paul committed
449
450
451
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=None,
    ):
Dhruv Nair's avatar
Dhruv Nair committed
452
453
454
        if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
            logger.warning(
                f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
455
            )
Sayak Paul's avatar
Sayak Paul committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

hlky's avatar
hlky committed
483
484
485
486
487
488
489
490
491
492
493
        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

Sayak Paul's avatar
Sayak Paul committed
494
495
496
497
        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )
hlky's avatar
hlky committed
498
499
500
501
        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
            )
Sayak Paul's avatar
Sayak Paul committed
502
503
504
505
506
507

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")

    @staticmethod
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
508
        latent_image_ids = torch.zeros(height, width, 3)
509
510
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
Sayak Paul's avatar
Sayak Paul committed
511
512
513
514

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids.reshape(
YiYi Xu's avatar
YiYi Xu committed
515
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
Sayak Paul's avatar
Sayak Paul committed
516
517
        )

518
        return latent_image_ids.to(device=device, dtype=dtype)
Sayak Paul's avatar
Sayak Paul committed
519
520
521
522
523
524
525
526
527
528
529
530
531

    @staticmethod
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)

        return latents

    @staticmethod
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

Dhruv Nair's avatar
Dhruv Nair committed
532
533
534
535
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (vae_scale_factor * 2))
        width = 2 * (int(width) // (vae_scale_factor * 2))
Sayak Paul's avatar
Sayak Paul committed
536

537
        latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
Sayak Paul's avatar
Sayak Paul committed
538
539
        latents = latents.permute(0, 3, 1, 4, 2, 5)

540
        latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
Sayak Paul's avatar
Sayak Paul committed
541
542
543

        return latents

544
545
546
547
548
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
549
550
551
552
553
554
        depr_message = f"Calling `enable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_slicing()`."
        deprecate(
            "enable_vae_slicing",
            "0.40.0",
            depr_message,
        )
555
556
557
558
559
560
561
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
562
563
564
565
566
567
        depr_message = f"Calling `disable_vae_slicing()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_slicing()`."
        deprecate(
            "disable_vae_slicing",
            "0.40.0",
            depr_message,
        )
568
569
570
571
572
573
574
575
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
576
577
578
579
580
581
        depr_message = f"Calling `enable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.enable_tiling()`."
        deprecate(
            "enable_vae_tiling",
            "0.40.0",
            depr_message,
        )
582
583
584
585
586
587
588
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
589
590
591
592
593
594
        depr_message = f"Calling `disable_vae_tiling()` on a `{self.__class__.__name__}` is deprecated and this method will be removed in a future version. Please use `pipe.vae.disable_tiling()`."
        deprecate(
            "disable_vae_tiling",
            "0.40.0",
            depr_message,
        )
595
596
        self.vae.disable_tiling()

Sayak Paul's avatar
Sayak Paul committed
597
598
599
600
601
602
603
604
605
606
607
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
Dhruv Nair's avatar
Dhruv Nair committed
608
609
610
611
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))
Sayak Paul's avatar
Sayak Paul committed
612
613
614
615

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
616
            latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
Sayak Paul's avatar
Sayak Paul committed
617
618
619
620
621
622
623
624
625
626
627
            return latents.to(device=device, dtype=dtype), latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)

628
        latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
Sayak Paul's avatar
Sayak Paul committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

        return latents, latent_image_ids

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

644
645
646
647
    @property
    def current_timestep(self):
        return self._current_timestep

Sayak Paul's avatar
Sayak Paul committed
648
649
650
651
652
653
654
655
656
657
    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
hlky's avatar
hlky committed
658
659
660
        negative_prompt: Union[str, List[str]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        true_cfg_scale: float = 1.0,
Sayak Paul's avatar
Sayak Paul committed
661
662
663
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
hlky's avatar
hlky committed
664
        sigmas: Optional[List[float]] = None,
665
        guidance_scale: float = 3.5,
Sayak Paul's avatar
Sayak Paul committed
666
667
668
669
670
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
hlky's avatar
hlky committed
671
672
673
674
675
676
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        negative_ip_adapter_image: Optional[PipelineImageInput] = None,
        negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
Sayak Paul's avatar
Sayak Paul committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
693
694
695
696
697
698
699
700
701
                will be used instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
                not greater than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
            true_cfg_scale (`float`, *optional*, defaults to 1.0):
702
703
                True classifier-free guidance (guidance scale) is enabled when `true_cfg_scale` > 1 and
                `negative_prompt` is provided.
Sayak Paul's avatar
Sayak Paul committed
704
705
706
707
708
709
710
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
hlky's avatar
hlky committed
711
712
713
714
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
715
            guidance_scale (`float`, *optional*, defaults to 3.5):
716
717
718
719
720
                Embedded guiddance scale is enabled by setting `guidance_scale` > 1. Higher `guidance_scale` encourages
                a model to generate images more aligned with `prompt` at the expense of lower image quality.

                Guidance-distilled models approximates true classifer-free guidance for `guidance_scale` > 1. Refer to
                the [paper](https://huggingface.co/papers/2210.03142) to learn more.
Sayak Paul's avatar
Sayak Paul committed
721
722
723
724
725
726
727
728
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
729
                tensor will be generated by sampling using the supplied random `generator`.
Sayak Paul's avatar
Sayak Paul committed
730
731
732
733
734
735
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
hlky's avatar
hlky committed
736
737
738
739
740
741
742
743
744
745
746
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            negative_ip_adapter_image:
                (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
747
748
749
750
751
752
753
754
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
Sayak Paul's avatar
Sayak Paul committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
            images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
hlky's avatar
hlky committed
792
793
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
Sayak Paul's avatar
Sayak Paul committed
794
            prompt_embeds=prompt_embeds,
hlky's avatar
hlky committed
795
            negative_prompt_embeds=negative_prompt_embeds,
Sayak Paul's avatar
Sayak Paul committed
796
            pooled_prompt_embeds=pooled_prompt_embeds,
hlky's avatar
hlky committed
797
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
Sayak Paul's avatar
Sayak Paul committed
798
799
800
801
802
803
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
804
        self._current_timestep = None
Sayak Paul's avatar
Sayak Paul committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        )
820
821
822
823
        has_neg_prompt = negative_prompt is not None or (
            negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
        )
        do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
Sayak Paul's avatar
Sayak Paul committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
hlky's avatar
hlky committed
838
839
840
841
        if do_true_cfg:
            (
                negative_prompt_embeds,
                negative_pooled_prompt_embeds,
842
                negative_text_ids,
hlky's avatar
hlky committed
843
844
845
846
847
848
849
850
851
852
            ) = self.encode_prompt(
                prompt=negative_prompt,
                prompt_2=negative_prompt_2,
                prompt_embeds=negative_prompt_embeds,
                pooled_prompt_embeds=negative_pooled_prompt_embeds,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                lora_scale=lora_scale,
            )
Sayak Paul's avatar
Sayak Paul committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 5. Prepare timesteps
hlky's avatar
hlky committed
868
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
869
870
        if hasattr(self.scheduler.config, "use_flow_sigmas") and self.scheduler.config.use_flow_sigmas:
            sigmas = None
Sayak Paul's avatar
Sayak Paul committed
871
872
873
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
874
875
876
            self.scheduler.config.get("base_image_seq_len", 256),
            self.scheduler.config.get("max_image_seq_len", 4096),
            self.scheduler.config.get("base_shift", 0.5),
877
            self.scheduler.config.get("max_shift", 1.15),
Sayak Paul's avatar
Sayak Paul committed
878
879
880
881
882
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
hlky's avatar
hlky committed
883
            sigmas=sigmas,
Sayak Paul's avatar
Sayak Paul committed
884
885
886
887
888
            mu=mu,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

889
890
891
892
893
894
895
        # handle guidance
        if self.transformer.config.guidance_embeds:
            guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
            guidance = guidance.expand(latents.shape[0])
        else:
            guidance = None

hlky's avatar
hlky committed
896
897
898
899
        if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
            negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
        ):
            negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
900
901
            negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters

hlky's avatar
hlky committed
902
903
904
905
        elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
            negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
        ):
            ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
906
            ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
hlky's avatar
hlky committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

        if self.joint_attention_kwargs is None:
            self._joint_attention_kwargs = {}

        image_embeds = None
        negative_image_embeds = None
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
            )
        if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
            negative_image_embeds = self.prepare_ip_adapter_image_embeds(
                negative_ip_adapter_image,
                negative_ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
            )

Sayak Paul's avatar
Sayak Paul committed
928
        # 6. Denoising loop
929
930
        # We set the index here to remove DtoH sync, helpful especially during compilation.
        # Check out more details here: https://github.com/huggingface/diffusers/pull/11696
931
        self.scheduler.set_begin_index(0)
Sayak Paul's avatar
Sayak Paul committed
932
933
934
935
936
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

937
                self._current_timestep = t
hlky's avatar
hlky committed
938
939
                if image_embeds is not None:
                    self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
Sayak Paul's avatar
Sayak Paul committed
940
941
942
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latents.shape[0]).to(latents.dtype)

Aryan's avatar
Aryan committed
943
944
                with self.transformer.cache_context("cond"):
                    noise_pred = self.transformer(
hlky's avatar
hlky committed
945
946
947
                        hidden_states=latents,
                        timestep=timestep / 1000,
                        guidance=guidance,
Aryan's avatar
Aryan committed
948
949
950
                        pooled_projections=pooled_prompt_embeds,
                        encoder_hidden_states=prompt_embeds,
                        txt_ids=text_ids,
hlky's avatar
hlky committed
951
952
953
954
                        img_ids=latent_image_ids,
                        joint_attention_kwargs=self.joint_attention_kwargs,
                        return_dict=False,
                    )[0]
Aryan's avatar
Aryan committed
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

                if do_true_cfg:
                    if negative_image_embeds is not None:
                        self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds

                    with self.transformer.cache_context("uncond"):
                        neg_noise_pred = self.transformer(
                            hidden_states=latents,
                            timestep=timestep / 1000,
                            guidance=guidance,
                            pooled_projections=negative_pooled_prompt_embeds,
                            encoder_hidden_states=negative_prompt_embeds,
                            txt_ids=negative_text_ids,
                            img_ids=latent_image_ids,
                            joint_attention_kwargs=self.joint_attention_kwargs,
                            return_dict=False,
                        )[0]
hlky's avatar
hlky committed
972
973
                    noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)

Sayak Paul's avatar
Sayak Paul committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

999
1000
        self._current_timestep = None

Sayak Paul's avatar
Sayak Paul committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        if output_type == "latent":
            image = latents
        else:
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)