resnet.py 31.6 KB
Newer Older
1
2
# Copyright 2024 The HuggingFace Team. All rights reserved.
# `TemporalConvLayer` Copyright 2024 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

patil-suraj's avatar
patil-suraj committed
16
from functools import partial
17
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
18

19
20
21
22
import torch
import torch.nn as nn
import torch.nn.functional as F

23
from ..utils import deprecate
24
from .activations import get_activation
YiYi Xu's avatar
YiYi Xu committed
25
from .attention_processor import SpatialNorm
26
27
28
29
30
31
32
from .downsampling import (  # noqa
    Downsample1D,
    Downsample2D,
    FirDownsample2D,
    KDownsample2D,
    downsample_2d,
)
33
from .normalization import AdaGroupNorm
34
35
36
37
38
39
40
41
from .upsampling import (  # noqa
    FirUpsample2D,
    KUpsample2D,
    Upsample1D,
    Upsample2D,
    upfirdn2d_native,
    upsample_2d,
)
42
43


44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class ResnetBlockCondNorm2D(nn.Module):
    r"""
    A Resnet block that use normalization layer that incorporate conditioning information.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
        groups_out (`int`, *optional*, default to None):
            The number of groups to use for the second normalization layer. if set to None, same as `groups`.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
        non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
        time_embedding_norm (`str`, *optional*, default to `"ada_group"` ):
            The normalization layer for time embedding `temb`. Currently only support "ada_group" or "spatial".
        kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
            [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
        output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
        use_in_shortcut (`bool`, *optional*, default to `True`):
            If `True`, add a 1x1 nn.conv2d layer for skip-connection.
        up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
        down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
        conv_shortcut_bias (`bool`, *optional*, default to `True`):  If `True`, adds a learnable bias to the
            `conv_shortcut` output.
        conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
            If None, same as `out_channels`.
    """

    def __init__(
        self,
        *,
        in_channels: int,
        out_channels: Optional[int] = None,
        conv_shortcut: bool = False,
        dropout: float = 0.0,
        temb_channels: int = 512,
        groups: int = 32,
        groups_out: Optional[int] = None,
        eps: float = 1e-6,
        non_linearity: str = "swish",
        time_embedding_norm: str = "ada_group",  # ada_group, spatial
        output_scale_factor: float = 1.0,
        use_in_shortcut: Optional[bool] = None,
        up: bool = False,
        down: bool = False,
        conv_shortcut_bias: bool = True,
        conv_2d_out_channels: Optional[int] = None,
    ):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor
        self.time_embedding_norm = time_embedding_norm

104
        conv_cls = nn.Conv2d
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

        if groups_out is None:
            groups_out = groups

        if self.time_embedding_norm == "ada_group":  # ada_group
            self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
        elif self.time_embedding_norm == "spatial":
            self.norm1 = SpatialNorm(in_channels, temb_channels)
        else:
            raise ValueError(f" unsupported time_embedding_norm: {self.time_embedding_norm}")

        self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if self.time_embedding_norm == "ada_group":  # ada_group
            self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
        elif self.time_embedding_norm == "spatial":  # spatial
            self.norm2 = SpatialNorm(out_channels, temb_channels)
        else:
            raise ValueError(f" unsupported time_embedding_norm: {self.time_embedding_norm}")

        self.dropout = torch.nn.Dropout(dropout)

        conv_2d_out_channels = conv_2d_out_channels or out_channels
        self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)

        self.nonlinearity = get_activation(non_linearity)

        self.upsample = self.downsample = None
        if self.up:
            self.upsample = Upsample2D(in_channels, use_conv=False)
        elif self.down:
            self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")

        self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = conv_cls(
                in_channels,
                conv_2d_out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=conv_shortcut_bias,
            )

151
152
153
154
155
    def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

156
157
158
159
160
161
162
163
164
165
166
        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states, temb)

        hidden_states = self.nonlinearity(hidden_states)

        if self.upsample is not None:
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
167
168
            input_tensor = self.upsample(input_tensor)
            hidden_states = self.upsample(hidden_states)
169
170

        elif self.downsample is not None:
171
172
            input_tensor = self.downsample(input_tensor)
            hidden_states = self.downsample(hidden_states)
173

174
        hidden_states = self.conv1(hidden_states)
175
176
177
178
179
180

        hidden_states = self.norm2(hidden_states, temb)

        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
181
        hidden_states = self.conv2(hidden_states)
182
183

        if self.conv_shortcut is not None:
184
            input_tensor = self.conv_shortcut(input_tensor)
185
186
187
188
189
190

        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

        return output_tensor


191
class ResnetBlock2D(nn.Module):
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    r"""
    A Resnet block.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
        groups_out (`int`, *optional*, default to None):
            The number of groups to use for the second normalization layer. if set to None, same as `groups`.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
        non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
        time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
207
208
            By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift"
            for a stronger conditioning with scale and shift.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
209
        kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
210
211
212
213
214
215
216
217
218
219
220
221
            [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
        output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
        use_in_shortcut (`bool`, *optional*, default to `True`):
            If `True`, add a 1x1 nn.conv2d layer for skip-connection.
        up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
        down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
        conv_shortcut_bias (`bool`, *optional*, default to `True`):  If `True`, adds a learnable bias to the
            `conv_shortcut` output.
        conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
            If None, same as `out_channels`.
    """

222
223
224
    def __init__(
        self,
        *,
225
226
227
228
229
230
231
232
233
234
235
        in_channels: int,
        out_channels: Optional[int] = None,
        conv_shortcut: bool = False,
        dropout: float = 0.0,
        temb_channels: int = 512,
        groups: int = 32,
        groups_out: Optional[int] = None,
        pre_norm: bool = True,
        eps: float = 1e-6,
        non_linearity: str = "swish",
        skip_time_act: bool = False,
236
        time_embedding_norm: str = "default",  # default, scale_shift,
237
238
239
240
241
        kernel: Optional[torch.FloatTensor] = None,
        output_scale_factor: float = 1.0,
        use_in_shortcut: Optional[bool] = None,
        up: bool = False,
        down: bool = False,
242
243
        conv_shortcut_bias: bool = True,
        conv_2d_out_channels: Optional[int] = None,
244
245
    ):
        super().__init__()
246
247
248
249
250
251
252
253
254
        if time_embedding_norm == "ada_group":
            raise ValueError(
                "This class cannot be used with `time_embedding_norm==ada_group`, please use `ResnetBlockCondNorm2D` instead",
            )
        if time_embedding_norm == "spatial":
            raise ValueError(
                "This class cannot be used with `time_embedding_norm==spatial`, please use `ResnetBlockCondNorm2D` instead",
            )

255
256
257
258
259
260
261
262
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor
263
        self.time_embedding_norm = time_embedding_norm
264
        self.skip_time_act = skip_time_act
265

266
267
        linear_cls = nn.Linear
        conv_cls = nn.Conv2d
268

269
270
271
        if groups_out is None:
            groups_out = groups

272
        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
273

274
        self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
275

276
        if temb_channels is not None:
Will Berman's avatar
Will Berman committed
277
            if self.time_embedding_norm == "default":
278
                self.time_emb_proj = linear_cls(temb_channels, out_channels)
Will Berman's avatar
Will Berman committed
279
            elif self.time_embedding_norm == "scale_shift":
280
                self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels)
Will Berman's avatar
Will Berman committed
281
282
            else:
                raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
283
284
        else:
            self.time_emb_proj = None
285

286
        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
287

288
        self.dropout = torch.nn.Dropout(dropout)
289
        conv_2d_out_channels = conv_2d_out_channels or out_channels
290
        self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
291

292
        self.nonlinearity = get_activation(non_linearity)
293
294
295
296
297

        self.upsample = self.downsample = None
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
298
                self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
299
300
301
302
303
304
305
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample2D(in_channels, use_conv=False)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
306
                self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
307
308
309
310
311
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")

312
        self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
313
314

        self.conv_shortcut = None
315
        if self.use_in_shortcut:
316
            self.conv_shortcut = conv_cls(
Suraj Patil's avatar
Suraj Patil committed
317
318
319
320
321
322
                in_channels,
                conv_2d_out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=conv_shortcut_bias,
323
            )
324

325
326
327
328
329
    def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

330
        hidden_states = input_tensor
331

332
        hidden_states = self.norm1(hidden_states)
333
        hidden_states = self.nonlinearity(hidden_states)
334
335

        if self.upsample is not None:
336
337
338
339
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
340
341
            input_tensor = self.upsample(input_tensor)
            hidden_states = self.upsample(hidden_states)
342
        elif self.downsample is not None:
343
344
            input_tensor = self.downsample(input_tensor)
            hidden_states = self.downsample(hidden_states)
345

346
        hidden_states = self.conv1(hidden_states)
347

348
        if self.time_emb_proj is not None:
349
350
            if not self.skip_time_act:
                temb = self.nonlinearity(temb)
351
            temb = self.time_emb_proj(temb)[:, :, None, None]
Will Berman's avatar
Will Berman committed
352

353
354
355
        if self.time_embedding_norm == "default":
            if temb is not None:
                hidden_states = hidden_states + temb
356
            hidden_states = self.norm2(hidden_states)
357
358
359
360
361
        elif self.time_embedding_norm == "scale_shift":
            if temb is None:
                raise ValueError(
                    f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}"
                )
362
            time_scale, time_shift = torch.chunk(temb, 2, dim=1)
363
            hidden_states = self.norm2(hidden_states)
364
            hidden_states = hidden_states * (1 + time_scale) + time_shift
365
366
        else:
            hidden_states = self.norm2(hidden_states)
Will Berman's avatar
Will Berman committed
367

368
        hidden_states = self.nonlinearity(hidden_states)
369

370
        hidden_states = self.dropout(hidden_states)
371
        hidden_states = self.conv2(hidden_states)
372
373

        if self.conv_shortcut is not None:
374
            input_tensor = self.conv_shortcut(input_tensor)
375

376
        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
377

378
        return output_tensor
379

Patrick von Platen's avatar
Patrick von Platen committed
380

381
# unet_rl.py
382
def rearrange_dims(tensor: torch.Tensor) -> torch.Tensor:
383
384
385
386
387
388
389
390
391
392
393
394
395
    if len(tensor.shape) == 2:
        return tensor[:, :, None]
    if len(tensor.shape) == 3:
        return tensor[:, :, None, :]
    elif len(tensor.shape) == 4:
        return tensor[:, :, 0, :]
    else:
        raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
396
397
398
399
400
401

    Parameters:
        inp_channels (`int`): Number of input channels.
        out_channels (`int`): Number of output channels.
        kernel_size (`int` or `tuple`): Size of the convolving kernel.
        n_groups (`int`, default `8`): Number of groups to separate the channels into.
402
        activation (`str`, defaults to `mish`): Name of the activation function.
403
404
    """

405
    def __init__(
406
407
408
409
410
411
        self,
        inp_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int]],
        n_groups: int = 8,
        activation: str = "mish",
412
    ):
413
414
415
416
        super().__init__()

        self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
        self.group_norm = nn.GroupNorm(n_groups, out_channels)
417
        self.mish = get_activation(activation)
418

419
    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
420
421
422
423
424
425
        intermediate_repr = self.conv1d(inputs)
        intermediate_repr = rearrange_dims(intermediate_repr)
        intermediate_repr = self.group_norm(intermediate_repr)
        intermediate_repr = rearrange_dims(intermediate_repr)
        output = self.mish(intermediate_repr)
        return output
426
427
428
429


# unet_rl.py
class ResidualTemporalBlock1D(nn.Module):
430
431
432
433
434
435
436
437
    """
    Residual 1D block with temporal convolutions.

    Parameters:
        inp_channels (`int`): Number of input channels.
        out_channels (`int`): Number of output channels.
        embed_dim (`int`): Embedding dimension.
        kernel_size (`int` or `tuple`): Size of the convolving kernel.
438
        activation (`str`, defaults `mish`): It is possible to choose the right activation function.
439
440
441
    """

    def __init__(
442
443
444
445
446
447
        self,
        inp_channels: int,
        out_channels: int,
        embed_dim: int,
        kernel_size: Union[int, Tuple[int, int]] = 5,
        activation: str = "mish",
448
    ):
449
450
451
452
        super().__init__()
        self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
        self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)

453
        self.time_emb_act = get_activation(activation)
454
455
456
457
458
459
        self.time_emb = nn.Linear(embed_dim, out_channels)

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

460
    def forward(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
461
462
        """
        Args:
463
            inputs : [ batch_size x inp_channels x horizon ]
464
465
466
467
468
469
470
            t : [ batch_size x embed_dim ]

        returns:
            out : [ batch_size x out_channels x horizon ]
        """
        t = self.time_emb_act(t)
        t = self.time_emb(t)
471
        out = self.conv_in(inputs) + rearrange_dims(t)
472
        out = self.conv_out(out)
473
        return out + self.residual_conv(inputs)
474
475


476
477
478
479
class TemporalConvLayer(nn.Module):
    """
    Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
    https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
480
481
482
483
484

    Parameters:
        in_dim (`int`): Number of input channels.
        out_dim (`int`): Number of output channels.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
485
486
    """

Suraj Patil's avatar
Suraj Patil committed
487
488
489
490
491
492
493
    def __init__(
        self,
        in_dim: int,
        out_dim: Optional[int] = None,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
    ):
494
495
496
497
498
499
500
        super().__init__()
        out_dim = out_dim or in_dim
        self.in_dim = in_dim
        self.out_dim = out_dim

        # conv layers
        self.conv1 = nn.Sequential(
Suraj Patil's avatar
Suraj Patil committed
501
502
503
            nn.GroupNorm(norm_num_groups, in_dim),
            nn.SiLU(),
            nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)),
504
505
        )
        self.conv2 = nn.Sequential(
Dhruv Nair's avatar
Dhruv Nair committed
506
            nn.GroupNorm(norm_num_groups, out_dim),
507
508
509
510
511
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )
        self.conv3 = nn.Sequential(
Dhruv Nair's avatar
Dhruv Nair committed
512
            nn.GroupNorm(norm_num_groups, out_dim),
513
514
515
516
517
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )
        self.conv4 = nn.Sequential(
Dhruv Nair's avatar
Dhruv Nair committed
518
            nn.GroupNorm(norm_num_groups, out_dim),
519
520
521
522
523
524
525
526
527
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )

        # zero out the last layer params,so the conv block is identity
        nn.init.zeros_(self.conv4[-1].weight)
        nn.init.zeros_(self.conv4[-1].bias)

528
    def forward(self, hidden_states: torch.Tensor, num_frames: int = 1) -> torch.Tensor:
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        hidden_states = (
            hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4)
        )

        identity = hidden_states
        hidden_states = self.conv1(hidden_states)
        hidden_states = self.conv2(hidden_states)
        hidden_states = self.conv3(hidden_states)
        hidden_states = self.conv4(hidden_states)

        hidden_states = identity + hidden_states

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(
            (hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
        )
        return hidden_states
Suraj Patil's avatar
Suraj Patil committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802


class TemporalResnetBlock(nn.Module):
    r"""
    A Resnet block.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        temb_channels: int = 512,
        eps: float = 1e-6,
    ):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels

        kernel_size = (3, 1, 1)
        padding = [k // 2 for k in kernel_size]

        self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True)
        self.conv1 = nn.Conv3d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=padding,
        )

        if temb_channels is not None:
            self.time_emb_proj = nn.Linear(temb_channels, out_channels)
        else:
            self.time_emb_proj = None

        self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True)

        self.dropout = torch.nn.Dropout(0.0)
        self.conv2 = nn.Conv3d(
            out_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=padding,
        )

        self.nonlinearity = get_activation("silu")

        self.use_in_shortcut = self.in_channels != out_channels

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = nn.Conv3d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
            )

    def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

        if self.time_emb_proj is not None:
            temb = self.nonlinearity(temb)
            temb = self.time_emb_proj(temb)[:, :, :, None, None]
            temb = temb.permute(0, 2, 1, 3, 4)
            hidden_states = hidden_states + temb

        hidden_states = self.norm2(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = input_tensor + hidden_states

        return output_tensor


# VideoResBlock
class SpatioTemporalResBlock(nn.Module):
    r"""
    A SpatioTemporal Resnet block.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet.
        temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet.
        merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing.
        merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
            The merge strategy to use for the temporal mixing.
        switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
            If `True`, switch the spatial and temporal mixing.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        temb_channels: int = 512,
        eps: float = 1e-6,
        temporal_eps: Optional[float] = None,
        merge_factor: float = 0.5,
        merge_strategy="learned_with_images",
        switch_spatial_to_temporal_mix: bool = False,
    ):
        super().__init__()

        self.spatial_res_block = ResnetBlock2D(
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            eps=eps,
        )

        self.temporal_res_block = TemporalResnetBlock(
            in_channels=out_channels if out_channels is not None else in_channels,
            out_channels=out_channels if out_channels is not None else in_channels,
            temb_channels=temb_channels,
            eps=temporal_eps if temporal_eps is not None else eps,
        )

        self.time_mixer = AlphaBlender(
            alpha=merge_factor,
            merge_strategy=merge_strategy,
            switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix,
        )

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
    ):
        num_frames = image_only_indicator.shape[-1]
        hidden_states = self.spatial_res_block(hidden_states, temb)

        batch_frames, channels, height, width = hidden_states.shape
        batch_size = batch_frames // num_frames

        hidden_states_mix = (
            hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
        )
        hidden_states = (
            hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
        )

        if temb is not None:
            temb = temb.reshape(batch_size, num_frames, -1)

        hidden_states = self.temporal_res_block(hidden_states, temb)
        hidden_states = self.time_mixer(
            x_spatial=hidden_states_mix,
            x_temporal=hidden_states,
            image_only_indicator=image_only_indicator,
        )

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
        return hidden_states


class AlphaBlender(nn.Module):
    r"""
    A module to blend spatial and temporal features.

    Parameters:
        alpha (`float`): The initial value of the blending factor.
        merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
            The merge strategy to use for the temporal mixing.
        switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
            If `True`, switch the spatial and temporal mixing.
    """

    strategies = ["learned", "fixed", "learned_with_images"]

    def __init__(
        self,
        alpha: float,
        merge_strategy: str = "learned_with_images",
        switch_spatial_to_temporal_mix: bool = False,
    ):
        super().__init__()
        self.merge_strategy = merge_strategy
        self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix  # For TemporalVAE

        if merge_strategy not in self.strategies:
            raise ValueError(f"merge_strategy needs to be in {self.strategies}")

        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images":
            self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha])))
        else:
            raise ValueError(f"Unknown merge strategy {self.merge_strategy}")

    def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor:
        if self.merge_strategy == "fixed":
            alpha = self.mix_factor

        elif self.merge_strategy == "learned":
            alpha = torch.sigmoid(self.mix_factor)

        elif self.merge_strategy == "learned_with_images":
            if image_only_indicator is None:
                raise ValueError("Please provide image_only_indicator to use learned_with_images merge strategy")

            alpha = torch.where(
                image_only_indicator.bool(),
                torch.ones(1, 1, device=image_only_indicator.device),
                torch.sigmoid(self.mix_factor)[..., None],
            )

            # (batch, channel, frames, height, width)
            if ndims == 5:
                alpha = alpha[:, None, :, None, None]
            # (batch*frames, height*width, channels)
            elif ndims == 3:
                alpha = alpha.reshape(-1)[:, None, None]
            else:
                raise ValueError(f"Unexpected ndims {ndims}. Dimensions should be 3 or 5")

        else:
            raise NotImplementedError

        return alpha

    def forward(
        self,
        x_spatial: torch.Tensor,
        x_temporal: torch.Tensor,
        image_only_indicator: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        alpha = self.get_alpha(image_only_indicator, x_spatial.ndim)
        alpha = alpha.to(x_spatial.dtype)

        if self.switch_spatial_to_temporal_mix:
            alpha = 1.0 - alpha

        x = alpha * x_spatial + (1.0 - alpha) * x_temporal
        return x