pipeline_pia.py 45.4 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Dhruv Nair's avatar
Dhruv Nair committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from dataclasses import dataclass
17
from typing import Any, Callable, Dict, List, Optional, Union
Dhruv Nair's avatar
Dhruv Nair committed
18
19
20
21
22
23

import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

24
from ...image_processor import PipelineImageInput
25
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
Dhruv Nair's avatar
Dhruv Nair committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
from ...models.lora import adjust_lora_scale_text_encoder
from ...models.unets.unet_motion_model import MotionAdapter
from ...schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
from ...utils import (
    USE_PEFT_BACKEND,
    BaseOutput,
hlky's avatar
hlky committed
40
    is_torch_xla_available,
Dhruv Nair's avatar
Dhruv Nair committed
41
42
43
44
45
46
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
47
from ...video_processor import VideoProcessor
48
from ..free_init_utils import FreeInitMixin
49
from ..pipeline_utils import DeprecatedPipelineMixin, DiffusionPipeline, StableDiffusionMixin
Dhruv Nair's avatar
Dhruv Nair committed
50
51


hlky's avatar
hlky committed
52
53
54
55
56
57
58
if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

Dhruv Nair's avatar
Dhruv Nair committed
59
60
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

hlky's avatar
hlky committed
61

Dhruv Nair's avatar
Dhruv Nair committed
62
63
64
65
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
Aryan's avatar
Aryan committed
66
        >>> from diffusers import EulerDiscreteScheduler, MotionAdapter, PIAPipeline
Dhruv Nair's avatar
Dhruv Nair committed
67
        >>> from diffusers.utils import export_to_gif, load_image
68

Aryan's avatar
Aryan committed
69
70
71
72
73
        >>> adapter = MotionAdapter.from_pretrained("openmmlab/PIA-condition-adapter")
        >>> pipe = PIAPipeline.from_pretrained(
        ...     "SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter, torch_dtype=torch.float16
        ... )

Dhruv Nair's avatar
Dhruv Nair committed
74
75
76
77
78
79
        >>> pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
        >>> image = load_image(
        ...     "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
        ... )
        >>> image = image.resize((512, 512))
        >>> prompt = "cat in a hat"
Aryan's avatar
Aryan committed
80
        >>> negative_prompt = "wrong white balance, dark, sketches, worst quality, low quality, deformed, distorted"
Dhruv Nair's avatar
Dhruv Nair committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        >>> generator = torch.Generator("cpu").manual_seed(0)
        >>> output = pipe(image=image, prompt=prompt, negative_prompt=negative_prompt, generator=generator)
        >>> frames = output.frames[0]
        >>> export_to_gif(frames, "pia-animation.gif")
        ```
"""

RANGE_LIST = [
    [1.0, 0.9, 0.85, 0.85, 0.85, 0.8],  # 0 Small Motion
    [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75],  # Moderate Motion
    [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5],  # Large Motion
    [1.0, 0.9, 0.85, 0.85, 0.85, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.85, 0.85, 0.9, 1.0],  # Loop
    [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75, 0.75, 0.75, 0.75, 0.75, 0.78, 0.79, 0.8, 0.8, 1.0],  # Loop
    [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5, 0.6, 0.7, 0.7, 0.7, 0.7, 0.8, 1.0],  # Loop
    [0.5, 0.4, 0.4, 0.4, 0.35, 0.3],  # Style Transfer Candidate Small Motion
    [0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2],  # Style Transfer Moderate Motion
    [0.5, 0.2],  # Style Transfer Large Motion
]


def prepare_mask_coef_by_statistics(num_frames: int, cond_frame: int, motion_scale: int):
    assert num_frames > 0, "video_length should be greater than 0"

    assert num_frames > cond_frame, "video_length should be greater than cond_frame"

    range_list = RANGE_LIST

    assert motion_scale < len(range_list), f"motion_scale type{motion_scale} not implemented"

    coef = range_list[motion_scale]
    coef = coef + ([coef[-1]] * (num_frames - len(coef)))

    order = [abs(i - cond_frame) for i in range(num_frames)]
    coef = [coef[order[i]] for i in range(num_frames)]

    return coef


@dataclass
class PIAPipelineOutput(BaseOutput):
    r"""
    Output class for PIAPipeline.

    Args:
125
        frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
126
127
128
            Nested list of length `batch_size` with denoised PIL image sequences of length `num_frames`, NumPy array of
            shape `(batch_size, num_frames, channels, height, width, Torch tensor of shape `(batch_size, num_frames,
            channels, height, width)`.
Dhruv Nair's avatar
Dhruv Nair committed
129
130
    """

131
    frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]
Dhruv Nair's avatar
Dhruv Nair committed
132
133


134
class PIAPipeline(
135
    DeprecatedPipelineMixin,
136
137
138
139
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    IPAdapterMixin,
140
    StableDiffusionLoraLoaderMixin,
141
142
    FromSingleFileMixin,
    FreeInitMixin,
143
):
144
    _last_supported_version = "0.33.1"
Dhruv Nair's avatar
Dhruv Nair committed
145
146
147
148
149
150
151
152
    r"""
    Pipeline for text-to-video generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
153
154
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
Dhruv Nair's avatar
Dhruv Nair committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer (`CLIPTokenizer`):
            A [`~transformers.CLIPTokenizer`] to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
        motion_adapter ([`MotionAdapter`]):
            A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: Union[UNet2DConditionModel, UNetMotionModel],
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
        motion_adapter: Optional[MotionAdapter] = None,
        feature_extractor: CLIPImageProcessor = None,
        image_encoder: CLIPVisionModelWithProjection = None,
    ):
        super().__init__()
        if isinstance(unet, UNet2DConditionModel):
            unet = UNetMotionModel.from_unet2d(unet, motion_adapter)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            motion_adapter=motion_adapter,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
hlky's avatar
hlky committed
209
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
210
        self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
Dhruv Nair's avatar
Dhruv Nair committed
211
212
213
214
215
216
217
218
219

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
220
221
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
Dhruv Nair's avatar
Dhruv Nair committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
241
            prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
242
243
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
244
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
245
246
247
248
249
250
251
252
253
254
255
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
256
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
Dhruv Nair's avatar
Dhruv Nair committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
co63oc's avatar
co63oc committed
273
            # textual inversion: process multi-vector tokens if necessary
Dhruv Nair's avatar
Dhruv Nair committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

co63oc's avatar
co63oc committed
355
            # textual inversion: process multi-vector tokens if necessary
Dhruv Nair's avatar
Dhruv Nair committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

388
        if self.text_encoder is not None:
389
            if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
390
391
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)
Dhruv Nair's avatar
Dhruv Nair committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents

        batch_size, channels, num_frames, height, width = latents.shape
        latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

        image = self.vae.decode(latents).sample
428
        video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
Dhruv Nair's avatar
Dhruv Nair committed
429
430
431
432
433
434
435
436
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
Quentin Gallouédec's avatar
Quentin Gallouédec committed
437
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
Dhruv Nair's avatar
Dhruv Nair committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
459
460
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
Dhruv Nair's avatar
Dhruv Nair committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

499
        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
500
            raise ValueError(
501
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
502
503
            )

504
505
506
507
508
        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
509
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
510
                raise ValueError(
511
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
512
513
                )

514
515
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(
516
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
517
    ):
YiYi Xu's avatar
YiYi Xu committed
518
519
520
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
521
522
523
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]
524

525
526
527
528
529
530
531
532
533
534
535
536
            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )

            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
537

YiYi Xu's avatar
YiYi Xu committed
538
                image_embeds.append(single_image_embeds[None, :])
539
                if do_classifier_free_guidance:
YiYi Xu's avatar
YiYi Xu committed
540
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
541
        else:
542
543
544
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
YiYi Xu's avatar
YiYi Xu committed
545
                    negative_image_embeds.append(single_negative_image_embeds)
546
547
                image_embeds.append(single_image_embeds)

YiYi Xu's avatar
YiYi Xu committed
548
549
550
551
552
553
554
555
556
557
558
        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)

            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds
559

Dhruv Nair's avatar
Dhruv Nair committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
    ):
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_masked_condition(
        self,
        image,
        batch_size,
        num_channels_latents,
        num_frames,
        height,
        width,
        dtype,
        device,
        generator,
        motion_scale=0,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        _, _, _, scaled_height, scaled_width = shape

608
        image = self.video_processor.preprocess(image)
Dhruv Nair's avatar
Dhruv Nair committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        image = image.to(device, dtype)

        if isinstance(generator, list):
            image_latent = [
                self.vae.encode(image[k : k + 1]).latent_dist.sample(generator[k]) for k in range(batch_size)
            ]
            image_latent = torch.cat(image_latent, dim=0)
        else:
            image_latent = self.vae.encode(image).latent_dist.sample(generator)

        image_latent = image_latent.to(device=device, dtype=dtype)
        image_latent = torch.nn.functional.interpolate(image_latent, size=[scaled_height, scaled_width])
        image_latent_padding = image_latent.clone() * self.vae.config.scaling_factor

        mask = torch.zeros((batch_size, 1, num_frames, scaled_height, scaled_width)).to(device=device, dtype=dtype)
        mask_coef = prepare_mask_coef_by_statistics(num_frames, 0, motion_scale)
        masked_image = torch.zeros(batch_size, 4, num_frames, scaled_height, scaled_width).to(
            device=device, dtype=self.unet.dtype
        )
        for f in range(num_frames):
            mask[:, :, f, :, :] = mask_coef[f]
            masked_image[:, :, f, :, :] = image_latent_padding.clone()

        mask = torch.cat([mask] * 2) if self.do_classifier_free_guidance else mask
        masked_image = torch.cat([masked_image] * 2) if self.do_classifier_free_guidance else masked_image

        return mask, masked_image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
644
645
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)
Dhruv Nair's avatar
Dhruv Nair committed
646
647
648
649
650
651
652
653
654
655
656
657

        return timesteps, num_inference_steps - t_start

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
Quentin Gallouédec's avatar
Quentin Gallouédec committed
658
    # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
Dhruv Nair's avatar
Dhruv Nair committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        image: PipelineImageInput,
        prompt: Union[str, List[str]] = None,
        strength: float = 1.0,
        num_frames: Optional[int] = 16,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_videos_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
688
689
690
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
Dhruv Nair's avatar
Dhruv Nair committed
691
        ip_adapter_image: Optional[PipelineImageInput] = None,
692
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
Dhruv Nair's avatar
Dhruv Nair committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        motion_scale: int = 0,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            image (`PipelineImageInput`):
                The input image to be used for video generation.
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
709
710
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1.
Dhruv Nair's avatar
Dhruv Nair committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated video.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated video.
            num_frames (`int`, *optional*, defaults to 16):
                The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
                amounts to 2 seconds of video.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
728
729
                Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
                applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
Dhruv Nair's avatar
Dhruv Nair committed
730
731
732
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
733
            latents (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
734
735
736
737
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
                `(batch_size, num_channel, num_frames, height, width)`.
738
            prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
739
740
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
741
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
742
743
744
745
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
746
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
747
748
749
750
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
Dhruv Nair's avatar
Dhruv Nair committed
751
            motion_scale: (`int`, *optional*, defaults to 0):
752
753
754
755
                Parameter that controls the amount and type of motion that is added to the image. Increasing the value
                increases the amount of motion, while specific ranges of values control the type of motion that is
                added. Must be between 0 and 8. Set between 0-2 to only increase the amount of motion. Set between 3-5
                to create looping motion. Set between 6-8 to perform motion with image style transfer.
Dhruv Nair's avatar
Dhruv Nair committed
756
            output_type (`str`, *optional*, defaults to `"pil"`):
757
                The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
Dhruv Nair's avatar
Dhruv Nair committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
775
                `._callback_tensor_inputs` attribute of your pipeline class.
Dhruv Nair's avatar
Dhruv Nair committed
776
777
778
779

        Examples:

        Returns:
780
            [`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] or `tuple`:
781
782
                If `return_dict` is `True`, [`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] is returned, otherwise a
                `tuple` is returned where the first element is a list with the generated frames.
Dhruv Nair's avatar
Dhruv Nair committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
798
799
            ip_adapter_image,
            ip_adapter_image_embeds,
Dhruv Nair's avatar
Dhruv Nair committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_videos_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

Aryan's avatar
Aryan committed
838
839
        prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)

840
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
841
            image_embeds = self.prepare_ip_adapter_image_embeds(
842
843
844
845
846
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_videos_per_prompt,
                self.do_classifier_free_guidance,
Dhruv Nair's avatar
Dhruv Nair committed
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
            )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
        latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            4,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents=latents,
        )
        mask, masked_image = self.prepare_masked_condition(
            image,
            batch_size * num_videos_per_prompt,
            4,
            num_frames=num_frames,
            height=height,
            width=width,
            dtype=self.unet.dtype,
            device=device,
            generator=generator,
            motion_scale=motion_scale,
        )
        if strength < 1.0:
            noise = randn_tensor(latents.shape, generator=generator, device=device, dtype=latents.dtype)
            latents = self.scheduler.add_noise(masked_image[0], noise, latent_timestep)

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Add image embeds for IP-Adapter
Aryan's avatar
Aryan committed
887
888
889
890
891
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )
Dhruv Nair's avatar
Dhruv Nair committed
892
893

        # 8. Denoising loop
894
895
896
897
898
899
900
        num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
        for free_init_iter in range(num_free_init_iters):
            if self.free_init_enabled:
                latents, timesteps = self._apply_free_init(
                    latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
                )

901
            self._num_timesteps = len(timesteps)
902
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
903
904

            with self.progress_bar(total=self._num_timesteps) as progress_bar:
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
                for i, t in enumerate(timesteps):
                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image], dim=1)

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        cross_attention_kwargs=cross_attention_kwargs,
                        added_cond_kwargs=added_cond_kwargs,
                    ).sample

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                    if callback_on_step_end is not None:
                        callback_kwargs = {}
                        for k in callback_on_step_end_tensor_inputs:
                            callback_kwargs[k] = locals()[k]
                        callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                        latents = callback_outputs.pop("latents", latents)
                        prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                        negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()

hlky's avatar
hlky committed
942
943
944
                    if XLA_AVAILABLE:
                        xm.mark_step()

945
        # 9. Post processing
946
        if output_type == "latent":
947
948
949
            video = latents
        else:
            video_tensor = self.decode_latents(latents)
950
            video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
Dhruv Nair's avatar
Dhruv Nair committed
951

952
        # 10. Offload all models
Dhruv Nair's avatar
Dhruv Nair committed
953
954
        self.maybe_free_model_hooks()

955
956
957
958
        if not return_dict:
            return (video,)

        return PIAPipelineOutput(frames=video)