test_kandinsky5.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2025 The Kandinsky Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import torch
from transformers import (
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
    Qwen2_5_VLConfig,
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLProcessor,
)

from diffusers import (
    AutoencoderKLHunyuanVideo,
    FlowMatchEulerDiscreteScheduler,
    Kandinsky5T2VPipeline,
    Kandinsky5Transformer3DModel,
)

from ...testing_utils import (
    enable_full_determinism,
    torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class Kandinsky5T2VPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = Kandinsky5T2VPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "prompt_embeds", "negative_prompt_embeds"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS

    # Define required optional parameters for your pipeline
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
            "max_sequence_length",
        ]
    )

    test_xformers_attention = False
    supports_dduf = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        vae = AutoencoderKLHunyuanVideo(
            in_channels=3,
            out_channels=3,
            spatial_compression_ratio=8,
            temporal_compression_ratio=4,
            latent_channels=4,
            block_out_channels=(8, 8, 8, 8),
            layers_per_block=1,
            norm_num_groups=4,
        )

        torch.manual_seed(0)
        scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)

        # Dummy Qwen2.5-VL model
        config = Qwen2_5_VLConfig(
            text_config={
                "hidden_size": 16,
                "intermediate_size": 16,
                "num_hidden_layers": 2,
                "num_attention_heads": 2,
                "num_key_value_heads": 2,
                "rope_scaling": {
                    "mrope_section": [1, 1, 2],
                    "rope_type": "default",
                    "type": "default",
                },
                "rope_theta": 1000000.0,
            },
            vision_config={
                "depth": 2,
                "hidden_size": 16,
                "intermediate_size": 16,
                "num_heads": 2,
                "out_hidden_size": 16,
            },
            hidden_size=16,
            vocab_size=152064,
            vision_end_token_id=151653,
            vision_start_token_id=151652,
            vision_token_id=151654,
        )
        text_encoder = Qwen2_5_VLForConditionalGeneration(config)
        tokenizer = Qwen2VLProcessor.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")

        # Dummy CLIP model
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModel(clip_text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        transformer = Kandinsky5Transformer3DModel(
            in_visual_dim=4,
            in_text_dim=16,  # Match tiny Qwen2.5-VL hidden size
            in_text_dim2=32,  # Match tiny CLIP hidden size
            time_dim=32,
            out_visual_dim=4,
            patch_size=(1, 2, 2),
            model_dim=48,
            ff_dim=128,
            num_text_blocks=1,
            num_visual_blocks=1,
            axes_dims=(8, 8, 8),
            visual_cond=False,
        )

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder.eval(),
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2.eval(),
            "tokenizer_2": tokenizer_2,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A cat dancing",
            "negative_prompt": "blurry, low quality",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "height": 32,
            "width": 32,
            "num_frames": 5,
            "max_sequence_length": 16,
            "output_type": "pt",
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        video = pipe(**inputs).frames

        # Check video shape: (batch, frames, channel, height, width)
        expected_shape = (1, 5, 3, 32, 32)
        self.assertEqual(video.shape, expected_shape)

        # Check specific values
        expected_slice = torch.tensor(
            [
                0.4330,
                0.4254,
                0.4285,
                0.3835,
                0.4253,
                0.4196,
                0.3704,
                0.3714,
                0.4999,
                0.5346,
                0.4795,
                0.4637,
                0.4930,
                0.5124,
                0.4902,
                0.4570,
            ]
        )

        generated_slice = video.flatten()
        # Take first 8 and last 8 values for comparison
        video_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
        self.assertTrue(
            torch.allclose(video_slice, expected_slice, atol=1e-3),
            f"video_slice: {video_slice}, expected_slice: {expected_slice}",
        )

    def test_inference_batch_single_identical(self):
        # Override to test batch single identical with video
        super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=1e-2)

    def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=1e-3, rtol=1e-3):
        components = self.get_dummy_components()

        text_component_names = ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]
        text_components = {k: (v if k in text_component_names else None) for k, v in components.items()}
        non_text_components = {k: (v if k not in text_component_names else None) for k, v in components.items()}

        pipe_with_just_text_encoder = self.pipeline_class(**text_components)
        pipe_with_just_text_encoder = pipe_with_just_text_encoder.to(torch_device)

        pipe_without_text_encoders = self.pipeline_class(**non_text_components)
        pipe_without_text_encoders = pipe_without_text_encoders.to(torch_device)

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)

        # Compute `encode_prompt()`.

        # Test single prompt
        prompt = "A cat dancing"
        with torch.no_grad():
            prompt_embeds_qwen, prompt_embeds_clip, prompt_cu_seqlens = pipe_with_just_text_encoder.encode_prompt(
                prompt, device=torch_device, max_sequence_length=16
            )

        # Check shapes
        self.assertEqual(prompt_embeds_qwen.shape, (1, 4, 16))  # [batch, seq_len, embed_dim]
        self.assertEqual(prompt_embeds_clip.shape, (1, 32))  # [batch, embed_dim]
        self.assertEqual(prompt_cu_seqlens.shape, (2,))  # [batch + 1]

        # Test batch of prompts
        prompts = ["A cat dancing", "A dog running"]
        with torch.no_grad():
            batch_embeds_qwen, batch_embeds_clip, batch_cu_seqlens = pipe_with_just_text_encoder.encode_prompt(
                prompts, device=torch_device, max_sequence_length=16
            )

        # Check batch size
        self.assertEqual(batch_embeds_qwen.shape, (len(prompts), 4, 16))
        self.assertEqual(batch_embeds_clip.shape, (len(prompts), 32))
        self.assertEqual(len(batch_cu_seqlens), len(prompts) + 1)  # [0, len1, len1+len2]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["guidance_scale"] = 1.0

        # baseline output: full pipeline
        pipe_out = pipe(**inputs).frames

        # test against pipeline call with pre-computed prompt embeds
        inputs = self.get_dummy_inputs(torch_device)
        inputs["guidance_scale"] = 1.0

        with torch.no_grad():
            prompt_embeds_qwen, prompt_embeds_clip, prompt_cu_seqlens = pipe_with_just_text_encoder.encode_prompt(
                inputs["prompt"], device=torch_device, max_sequence_length=inputs["max_sequence_length"]
            )

        inputs["prompt"] = None
        inputs["prompt_embeds_qwen"] = prompt_embeds_qwen
        inputs["prompt_embeds_clip"] = prompt_embeds_clip
        inputs["prompt_cu_seqlens"] = prompt_cu_seqlens

        pipe_out_2 = pipe_without_text_encoders(**inputs)[0]

        self.assertTrue(
            torch.allclose(pipe_out, pipe_out_2, atol=atol, rtol=rtol),
            f"max diff: {torch.max(torch.abs(pipe_out - pipe_out_2))}",
        )

    @unittest.skip("Kandinsky5T2VPipeline does not support attention slicing")
    def test_attention_slicing_forward_pass(self):
        pass

    @unittest.skip("Kandinsky5T2VPipeline does not support xformers")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

    @unittest.skip("Kandinsky5T2VPipeline does not support VAE slicing")
    def test_vae_slicing(self):
        pass