image_processor.py 6.42 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2025 The Black Forest Labs Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
from typing import List
Sayak Paul's avatar
Sayak Paul committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

import PIL.Image

from ...configuration_utils import register_to_config
from ...image_processor import VaeImageProcessor


class Flux2ImageProcessor(VaeImageProcessor):
    r"""
    Image processor to preprocess the reference (character) image for the Flux2 model.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
        vae_scale_factor (`int`, *optional*, defaults to `16`):
            VAE (spatial) scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of
            this factor.
        vae_latent_channels (`int`, *optional*, defaults to `32`):
            VAE latent channels.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image to [-1,1].
        do_convert_rgb (`bool`, *optional*, defaults to be `True`):
            Whether to convert the images to RGB format.
    """

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 16,
        vae_latent_channels: int = 32,
        do_normalize: bool = True,
        do_convert_rgb: bool = True,
    ):
        super().__init__(
            do_resize=do_resize,
            vae_scale_factor=vae_scale_factor,
            vae_latent_channels=vae_latent_channels,
            do_normalize=do_normalize,
            do_convert_rgb=do_convert_rgb,
        )

    @staticmethod
    def check_image_input(
        image: PIL.Image.Image, max_aspect_ratio: int = 8, min_side_length: int = 64, max_area: int = 1024 * 1024
    ) -> PIL.Image.Image:
        """
        Check if image meets minimum size and aspect ratio requirements.

        Args:
            image: PIL Image to validate
            max_aspect_ratio: Maximum allowed aspect ratio (width/height or height/width)
            min_side_length: Minimum pixels required for width and height
            max_area: Maximum allowed area in pixels²

        Returns:
            The input image if valid

        Raises:
            ValueError: If image is too small or aspect ratio is too extreme
        """
        if not isinstance(image, PIL.Image.Image):
            raise ValueError(f"Image must be a PIL.Image.Image, got {type(image)}")

        width, height = image.size

        # Check minimum dimensions
        if width < min_side_length or height < min_side_length:
            raise ValueError(
                f"Image too small: {width}×{height}. Both dimensions must be at least {min_side_length}px"
            )

        # Check aspect ratio
        aspect_ratio = max(width / height, height / width)
        if aspect_ratio > max_aspect_ratio:
            raise ValueError(
                f"Aspect ratio too extreme: {width}×{height} (ratio: {aspect_ratio:.1f}:1). "
                f"Maximum allowed ratio is {max_aspect_ratio}:1"
            )

        return image

    @staticmethod
101
    def _resize_to_target_area(image: PIL.Image.Image, target_area: int = 1024 * 1024) -> PIL.Image.Image:
Sayak Paul's avatar
Sayak Paul committed
102
103
104
105
106
107
108
109
        image_width, image_height = image.size

        scale = math.sqrt(target_area / (image_width * image_height))
        width = int(image_width * scale)
        height = int(image_height * scale)

        return image.resize((width, height), PIL.Image.Resampling.LANCZOS)

110
111
112
113
114
115
116
117
    @staticmethod
    def _resize_if_exceeds_area(image, target_area=1024 * 1024) -> PIL.Image.Image:
        image_width, image_height = image.size
        pixel_count = image_width * image_height
        if pixel_count <= target_area:
            return image
        return Flux2ImageProcessor._resize_to_target_area(image, target_area)

Sayak Paul's avatar
Sayak Paul committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    def _resize_and_crop(
        self,
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
        r"""
        center crop the image to the specified width and height.

        Args:
            image (`PIL.Image.Image`):
                The image to resize and crop.
            width (`int`):
                The width to resize the image to.
            height (`int`):
                The height to resize the image to.

        Returns:
            `PIL.Image.Image`:
                The resized and cropped image.
        """
        image_width, image_height = image.size

        left = (image_width - width) // 2
        top = (image_height - height) // 2
        right = left + width
        bottom = top + height

        return image.crop((left, top, right, bottom))
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

    # Taken from
    # https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/sampling.py#L310C1-L339C19
    @staticmethod
    def concatenate_images(images: List[PIL.Image.Image]) -> PIL.Image.Image:
        """
        Concatenate a list of PIL images horizontally with center alignment and white background.
        """

        # If only one image, return a copy of it
        if len(images) == 1:
            return images[0].copy()

        # Convert all images to RGB if not already
        images = [img.convert("RGB") if img.mode != "RGB" else img for img in images]

        # Calculate dimensions for horizontal concatenation
        total_width = sum(img.width for img in images)
        max_height = max(img.height for img in images)

        # Create new image with white background
        background_color = (255, 255, 255)
        new_img = PIL.Image.new("RGB", (total_width, max_height), background_color)

        # Paste images with center alignment
        x_offset = 0
        for img in images:
            y_offset = (max_height - img.height) // 2
            new_img.paste(img, (x_offset, y_offset))
            x_offset += img.width

        return new_img