test_pipeline_lumina2.py 3.56 KB
Newer Older
Le Zhuo's avatar
Le Zhuo committed
1
2
3
import unittest

import torch
4
from transformers import AutoTokenizer, Gemma2Config, Gemma2Model
Le Zhuo's avatar
Le Zhuo committed
5
6
7
8

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
9
    Lumina2Pipeline,
Le Zhuo's avatar
Le Zhuo committed
10
11
12
    Lumina2Text2ImgPipeline,
    Lumina2Transformer2DModel,
)
13
from diffusers.utils.testing_utils import torch_device
Le Zhuo's avatar
Le Zhuo committed
14
15
16
17

from ..test_pipelines_common import PipelineTesterMixin


18
19
class Lumina2PipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = Lumina2Pipeline
Le Zhuo's avatar
Le Zhuo committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
        ]
    )

    supports_dduf = False
    test_xformers_attention = False
    test_layerwise_casting = True

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = Lumina2Transformer2DModel(
            sample_size=4,
            patch_size=2,
            in_channels=4,
            hidden_size=8,
            num_layers=2,
            num_attention_heads=1,
            num_kv_heads=1,
            multiple_of=16,
            ffn_dim_multiplier=None,
            norm_eps=1e-5,
            scaling_factor=1.0,
            axes_dim_rope=[4, 2, 2],
            cap_feat_dim=8,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")

        torch.manual_seed(0)
84
85
        config = Gemma2Config(
            head_dim=4,
Le Zhuo's avatar
Le Zhuo committed
86
            hidden_size=8,
87
88
            intermediate_size=8,
            num_attention_heads=2,
Le Zhuo's avatar
Le Zhuo committed
89
            num_hidden_layers=2,
90
91
            num_key_value_heads=2,
            sliding_window=2,
Le Zhuo's avatar
Le Zhuo committed
92
        )
93
        text_encoder = Gemma2Model(config)
Le Zhuo's avatar
Le Zhuo committed
94
95

        components = {
96
            "transformer": transformer,
Le Zhuo's avatar
Le Zhuo committed
97
98
            "vae": vae.eval(),
            "scheduler": scheduler,
99
            "text_encoder": text_encoder,
Le Zhuo's avatar
Le Zhuo committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "height": 32,
            "width": 32,
            "output_type": "np",
        }
        return inputs
120
121
122
123
124
125

    def test_deprecation_raises_warning(self):
        with self.assertWarns(FutureWarning) as warning:
            _ = Lumina2Text2ImgPipeline(**self.get_dummy_components()).to(torch_device)
        warning_message = str(warning.warnings[0].message)
        assert "renamed to `Lumina2Pipeline`" in warning_message