scheduling_pndm_flax.py 22.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
16
17

import math
18
19
20
21
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
Pedro Cuenca's avatar
Pedro Cuenca committed
22
import jax
23
24
25
import jax.numpy as jnp

from ..configuration_utils import ConfigMixin, register_to_config
26
27
28
29
30
31
from .scheduling_utils_flax import (
    _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS,
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
    broadcast_to_shape_from_left,
)
32
33


34
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999) -> jnp.ndarray:
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
49
        betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return jnp.array(betas, dtype=jnp.float32)


@flax.struct.dataclass
class PNDMSchedulerState:
    # setable values
66
    _timesteps: jnp.ndarray
67
    num_inference_steps: Optional[int] = None
68
69
70
    prk_timesteps: Optional[jnp.ndarray] = None
    plms_timesteps: Optional[jnp.ndarray] = None
    timesteps: Optional[jnp.ndarray] = None
71
72
73
74
75

    # running values
    cur_model_output: Optional[jnp.ndarray] = None
    counter: int = 0
    cur_sample: Optional[jnp.ndarray] = None
76
    ets: jnp.ndarray = jnp.array([])
77
78

    @classmethod
79
80
    def create(cls, num_train_timesteps: int):
        return cls(_timesteps=jnp.arange(0, num_train_timesteps)[::-1])
81
82
83


@dataclass
84
class FlaxPNDMSchedulerOutput(FlaxSchedulerOutput):
85
86
87
    state: PNDMSchedulerState


88
class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin):
89
90
91
92
93
94
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
95
96
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
97
98
99
100
101
102
103
104
105
106

    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
107
        trained_betas (`jnp.ndarray`, optional):
108
109
110
111
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.
112
113
114
115
116
117
118
119
        set_alpha_to_one (`bool`, default `False`):
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
120
121
    """

122
123
    _compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()

124
125
126
127
    @property
    def has_state(self):
        return True

128
129
130
131
132
133
134
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
135
        trained_betas: Optional[jnp.ndarray] = None,
136
        skip_prk_steps: bool = False,
137
138
        set_alpha_to_one: bool = False,
        steps_offset: int = 0,
139
140
    ):
        if trained_betas is not None:
141
            self.betas = jnp.asarray(trained_betas)
142
        elif beta_schedule == "linear":
143
            self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
144
145
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
146
            self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
147
148
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
149
            self.betas = betas_for_alpha_bar(num_train_timesteps)
150
151
152
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

153
154
155
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)

156
157
        self.final_alpha_cumprod = jnp.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]

158
159
160
161
162
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
        # mainly at formula (9), (12), (13) and the Algorithm 2.
        self.pndm_order = 4

Suraj Patil's avatar
Suraj Patil committed
163
164
165
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

166
167
    def create_state(self):
        return PNDMSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps)
168

169
    def set_timesteps(self, state: PNDMSchedulerState, num_inference_steps: int, shape: Tuple) -> PNDMSchedulerState:
170
171
172
173
174
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`PNDMSchedulerState`):
175
                the `FlaxPNDMScheduler` state data class instance.
176
177
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
178
179
            shape (`Tuple`):
                the shape of the samples to be generated.
180
        """
181
182
        offset = self.config.steps_offset

183
184
        step_ratio = self.config.num_train_timesteps // num_inference_steps
        # creates integer timesteps by multiplying by ratio
185
        # rounding to avoid issues when num_inference_step is power of 3
186
        _timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + offset
187

188
        state = state.replace(num_inference_steps=num_inference_steps, _timesteps=_timesteps)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
            state = state.replace(
                prk_timesteps=jnp.array([]),
                plms_timesteps=jnp.concatenate(
                    [state._timesteps[:-1], state._timesteps[-2:-1], state._timesteps[-1:]]
                )[::-1],
            )
        else:
            prk_timesteps = jnp.array(state._timesteps[-self.pndm_order :]).repeat(2) + jnp.tile(
                jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )

            state = state.replace(
                prk_timesteps=(prk_timesteps[:-1].repeat(2)[1:-1])[::-1],
                plms_timesteps=state._timesteps[:-3][::-1],
            )

        return state.replace(
Suraj Patil's avatar
Suraj Patil committed
211
            timesteps=jnp.concatenate([state.prk_timesteps, state.plms_timesteps]).astype(jnp.int32),
212
            counter=0,
Pedro Cuenca's avatar
Pedro Cuenca committed
213
214
215
216
            # Reserve space for the state variables
            cur_model_output=jnp.zeros(shape),
            cur_sample=jnp.zeros(shape),
            ets=jnp.zeros((4,) + shape),
217
218
        )

Suraj Patil's avatar
Suraj Patil committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def scale_model_input(
        self, state: PNDMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
    ) -> jnp.ndarray:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
            sample (`jnp.ndarray`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `jnp.ndarray`: scaled input sample
        """
        return sample

236
237
238
239
240
241
242
    def step(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        return_dict: bool = True,
243
    ) -> Union[FlaxPNDMSchedulerOutput, Tuple]:
244
245
246
247
248
249
250
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
251
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
252
253
254
255
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
256
            return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class
257
258

        Returns:
259
260
            [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
261
262

        """
Pedro Cuenca's avatar
Pedro Cuenca committed
263
264
265
        if self.config.skip_prk_steps:
            prev_sample, state = self.step_plms(
                state=state, model_output=model_output, timestep=timestep, sample=sample
266
267
            )
        else:
Pedro Cuenca's avatar
Pedro Cuenca committed
268
269
270
271
272
273
274
275
            prev_sample, state = jax.lax.switch(
                jnp.where(state.counter < len(state.prk_timesteps), 0, 1),
                (self.step_prk, self.step_plms),
                # Args to either branch
                state,
                model_output,
                timestep,
                sample,
276
277
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
278
279
280
        if not return_dict:
            return (prev_sample, state)

281
        return FlaxPNDMSchedulerOutput(prev_sample=prev_sample, state=state)
Pedro Cuenca's avatar
Pedro Cuenca committed
282

283
284
285
286
287
288
    def step_prk(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
289
    ) -> Union[FlaxPNDMSchedulerOutput, Tuple]:
290
291
292
293
294
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.

        Args:
295
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
296
297
298
299
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
300
            return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class
301
302

        Returns:
303
304
            [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
305
306
307
308
309
310
311

        """
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
312
313
314
        diff_to_prev = jnp.where(
            state.counter % 2, 0, self.config.num_train_timesteps // state.num_inference_steps // 2
        )
315
        prev_timestep = timestep - diff_to_prev
316
317
        timestep = state.prk_timesteps[state.counter // 4 * 4]

Pedro Cuenca's avatar
Pedro Cuenca committed
318
319
320
321
322
323
324
325
        def remainder_0(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            return (
                state.replace(
                    cur_model_output=state.cur_model_output + 1 / 6 * model_output,
                    ets=state.ets.at[ets_at].set(model_output),
                    cur_sample=sample,
                ),
                model_output,
326
327
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
328
329
        def remainder_1(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            return state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output), model_output
330

Pedro Cuenca's avatar
Pedro Cuenca committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        def remainder_2(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            return state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output), model_output

        def remainder_3(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            model_output = state.cur_model_output + 1 / 6 * model_output
            return state.replace(cur_model_output=jnp.zeros_like(state.cur_model_output)), model_output

        state, model_output = jax.lax.switch(
            state.counter % 4,
            (remainder_0, remainder_1, remainder_2, remainder_3),
            # Args to either branch
            state,
            model_output,
            state.counter // 4,
        )

        cur_sample = state.cur_sample
348
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
349
        state = state.replace(counter=state.counter + 1)
350

Pedro Cuenca's avatar
Pedro Cuenca committed
351
        return (prev_sample, state)
352
353
354
355
356
357
358

    def step_plms(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
359
    ) -> Union[FlaxPNDMSchedulerOutput, Tuple]:
360
361
362
363
364
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.

        Args:
365
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
366
367
368
369
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
370
            return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class
371
372

        Returns:
373
374
            [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

        """
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if not self.config.skip_prk_steps and len(state.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

390
        prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps
Pedro Cuenca's avatar
Pedro Cuenca committed
391
392
393
394
395
396
397
398
399
400
401
402
403
        prev_timestep = jnp.where(prev_timestep > 0, prev_timestep, 0)

        # Reference:
        # if state.counter != 1:
        #     state.ets.append(model_output)
        # else:
        #     prev_timestep = timestep
        #     timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps

        prev_timestep = jnp.where(state.counter == 1, timestep, prev_timestep)
        timestep = jnp.where(
            state.counter == 1, timestep + self.config.num_train_timesteps // state.num_inference_steps, timestep
        )
404

Pedro Cuenca's avatar
Pedro Cuenca committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        # Reference:
        # if len(state.ets) == 1 and state.counter == 0:
        #     model_output = model_output
        #     state.cur_sample = sample
        # elif len(state.ets) == 1 and state.counter == 1:
        #     model_output = (model_output + state.ets[-1]) / 2
        #     sample = state.cur_sample
        #     state.cur_sample = None
        # elif len(state.ets) == 2:
        #     model_output = (3 * state.ets[-1] - state.ets[-2]) / 2
        # elif len(state.ets) == 3:
        #     model_output = (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12
        # else:
        #     model_output = (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4])

        def counter_0(state: PNDMSchedulerState):
            ets = state.ets.at[0].set(model_output)
            return state.replace(
                ets=ets,
                cur_sample=sample,
                cur_model_output=jnp.array(model_output, dtype=jnp.float32),
            )

        def counter_1(state: PNDMSchedulerState):
            return state.replace(
                cur_model_output=(model_output + state.ets[0]) / 2,
431
432
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        def counter_2(state: PNDMSchedulerState):
            ets = state.ets.at[1].set(model_output)
            return state.replace(
                ets=ets,
                cur_model_output=(3 * ets[1] - ets[0]) / 2,
                cur_sample=sample,
            )

        def counter_3(state: PNDMSchedulerState):
            ets = state.ets.at[2].set(model_output)
            return state.replace(
                ets=ets,
                cur_model_output=(23 * ets[2] - 16 * ets[1] + 5 * ets[0]) / 12,
                cur_sample=sample,
            )

        def counter_other(state: PNDMSchedulerState):
            ets = state.ets.at[3].set(model_output)
            next_model_output = (1 / 24) * (55 * ets[3] - 59 * ets[2] + 37 * ets[1] - 9 * ets[0])

            ets = ets.at[0].set(ets[1])
            ets = ets.at[1].set(ets[2])
            ets = ets.at[2].set(ets[3])

            return state.replace(
                ets=ets,
                cur_model_output=next_model_output,
                cur_sample=sample,
            )

        counter = jnp.clip(state.counter, 0, 4)
        state = jax.lax.switch(
            counter,
            [counter_0, counter_1, counter_2, counter_3, counter_other],
            state,
        )

        sample = state.cur_sample
        model_output = state.cur_model_output
472
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
473
        state = state.replace(counter=state.counter + 1)
474

Pedro Cuenca's avatar
Pedro Cuenca committed
475
        return (prev_sample, state)
476

477
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
478
479
480
481
482
483
484
485
486
487
488
489
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
        # model_output -> e_θ(x_t, t)
        # prev_sample -> x_(t−δ)
490
        alpha_prod_t = self.alphas_cumprod[timestep]
Pedro Cuenca's avatar
Pedro Cuenca committed
491
        alpha_prod_t_prev = jnp.where(prev_timestep >= 0, self.alphas_cumprod[prev_timestep], self.final_alpha_cumprod)
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )

        return prev_sample

    def add_noise(
        self,
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
519
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
520
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
521
        sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape)
522

523
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
524
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
525
        sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape)
526
527
528
529
530
531

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps