scheduling_lms_discrete_flax.py 8.68 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
import jax.numpy as jnp
from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
23
24
25
26
27
28
from .scheduling_utils_flax import (
    _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS,
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
    broadcast_to_shape_from_left,
)
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


@flax.struct.dataclass
class LMSDiscreteSchedulerState:
    # setable values
    num_inference_steps: Optional[int] = None
    timesteps: Optional[jnp.ndarray] = None
    sigmas: Optional[jnp.ndarray] = None
    derivatives: jnp.ndarray = jnp.array([])

    @classmethod
    def create(cls, num_train_timesteps: int, sigmas: jnp.ndarray):
        return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1], sigmas=sigmas)


@dataclass
45
class FlaxLMSSchedulerOutput(FlaxSchedulerOutput):
46
47
48
    state: LMSDiscreteSchedulerState


49
class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
50
51
52
53
54
55
56
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
57
58
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
59
60
61
62
63
64
65
66
67
68
69
70

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
        trained_betas (`jnp.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
    """

71
72
    _compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()

73
74
75
76
    @property
    def has_state(self):
        return True

77
78
79
80
81
82
83
84
85
86
87
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[jnp.ndarray] = None,
    ):
        if trained_betas is not None:
            self.betas = jnp.asarray(trained_betas)
88
        elif beta_schedule == "linear":
89
90
91
92
93
94
95
96
97
98
            self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)

99
    def create_state(self):
100
        self.state = LMSDiscreteSchedulerState.create(
101
102
            num_train_timesteps=self.config.num_train_timesteps,
            sigmas=((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5,
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        )

    def get_lms_coefficient(self, state, order, t, current_order):
        """
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

127
    def set_timesteps(
128
        self, state: LMSDiscreteSchedulerState, num_inference_steps: int, shape: Tuple = ()
129
    ) -> LMSDiscreteSchedulerState:
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`LMSDiscreteSchedulerState`):
                the `FlaxLMSDiscreteScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=jnp.float32)

        low_idx = jnp.floor(timesteps).astype(int)
        high_idx = jnp.ceil(timesteps).astype(int)
        frac = jnp.mod(timesteps, 1.0)
        sigmas = jnp.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx]
        sigmas = jnp.concatenate([sigmas, jnp.array([0.0])]).astype(jnp.float32)

        return state.replace(
            num_inference_steps=num_inference_steps,
150
            timesteps=timesteps.astype(int),
151
152
153
154
155
156
157
158
159
160
161
162
            derivatives=jnp.array([]),
            sigmas=sigmas,
        )

    def step(
        self,
        state: LMSDiscreteSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        order: int = 4,
        return_dict: bool = True,
163
    ) -> Union[FlaxLMSSchedulerOutput, Tuple]:
164
165
166
167
168
169
170
171
172
173
174
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
175
            return_dict (`bool`): option for returning tuple rather than FlaxLMSSchedulerOutput class
176
177

        Returns:
178
179
            [`FlaxLMSSchedulerOutput`] or `tuple`: [`FlaxLMSSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

        """
        sigma = state.sigmas[timestep]

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        pred_original_sample = sample - sigma * model_output

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        state = state.replace(derivatives=state.derivatives.append(derivative))
        if len(state.derivatives) > order:
            state = state.replace(derivatives=state.derivatives.pop(0))

        # 3. Compute linear multistep coefficients
        order = min(timestep + 1, order)
        lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)]

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(state.derivatives))
        )

        if not return_dict:
            return (prev_sample, state)

205
        return FlaxLMSSchedulerOutput(prev_sample=prev_sample, state=state)
206
207
208
209
210
211
212
213

    def add_noise(
        self,
        state: LMSDiscreteSchedulerState,
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
214
        sigma = state.sigmas[timesteps].flatten()
215
        sigma = broadcast_to_shape_from_left(sigma, noise.shape)
216
217

        noisy_samples = original_samples + noise * sigma
218
219
220
221
222

        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps