fp16.mdx 8.92 KB
Newer Older
Nathan Lambert's avatar
Nathan Lambert committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Pedro Cuenca's avatar
Pedro Cuenca committed
13
# Memory and speed
Patrick von Platen's avatar
Patrick von Platen committed
14

Pedro Cuenca's avatar
Pedro Cuenca committed
15
We present some techniques and ideas to optimize 🤗 Diffusers _inference_ for memory or speed.
Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
20
21
22
23
24
25
26

|                  | Latency | Speedup |
|------------------|---------|---------|
| original         | 9.50s   | x1      |
| cuDNN auto-tuner | 9.37s   | x1.01   |
| autocast (fp16)  | 5.47s   | x1.91   |
| fp16             | 3.61s   | x2.91   |
| channels last    | 3.30s   | x2.87   |
| traced UNet      | 3.21s   | x2.96   |

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<em>obtained on NVIDIA TITAN RTX by generating a single image of size 512x512 from the prompt "a photo of an astronaut riding a horse on mars" with 50 DDIM steps.</em>

## Enable cuDNN auto-tuner

[NVIDIA cuDNN](https://developer.nvidia.com/cudnn) supports many algorithms to compute a convolution. Autotuner runs a short benchmark and selects the kernel with the best performance on a given hardware for a given input size.

Since we’re using **convolutional networks** (other types currently not supported), we can enable cuDNN autotuner before launching the inference by setting:

```python
import torch

torch.backends.cudnn.benchmark = True
```

### Use tf32 instead of fp32 (on Ampere and later CUDA devices)

On Ampere and later CUDA devices matrix multiplications and convolutions can use the TensorFloat32 (TF32) mode for faster but slightly less accurate computations. By default PyTorch enables TF32 mode for convolutions but not matrix multiplications, and unless a network requires full float32 precision we recommend enabling this setting for matrix multiplications, too. It can significantly speed up computations with typically negligible loss of numerical accuracy. You can read more about it [here](https://huggingface.co/docs/transformers/v4.18.0/en/performance#tf32). All you need to do is to add this before your inference:

```python
import torch

torch.backends.cuda.matmul.allow_tf32 = True
```

## Automatic mixed precision (AMP)
Patrick von Platen's avatar
Patrick von Platen committed
52

Pedro Cuenca's avatar
Pedro Cuenca committed
53
If you use a CUDA GPU, you can take advantage of `torch.autocast` to perform inference roughly twice as fast at the cost of slightly lower precision. All you need to do is put your inference call inside an `autocast` context manager. The following example shows how to do it using Stable Diffusion text-to-image generation as an example:
Patrick von Platen's avatar
Patrick von Platen committed
54

Pedro Cuenca's avatar
Pedro Cuenca committed
55
56
57
58
```Python
from torch import autocast
from diffusers import StableDiffusionPipeline

59
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
Pedro Cuenca's avatar
Pedro Cuenca committed
60
61
62
63
64
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
with autocast("cuda"):
    image = pipe(prompt).images[0]  
Patrick von Platen's avatar
Patrick von Platen committed
65
```
Pedro Cuenca's avatar
Pedro Cuenca committed
66
67
68
69
70
71
72
73
74
75
76
77
78

Despite the precision loss, in our experience the final image results look the same as the `float32` versions. Feel free to experiment and report back!

## Half precision weights

To save more GPU memory, you can load the model weights directly in half precision. This involves loading the float16 version of the weights, which was saved to a branch named `fp16`, and telling PyTorch to use the `float16` type when loading them:

```Python
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    revision="fp16",
    torch_dtype=torch.float16,
)
Patrick von Platen's avatar
Patrick von Platen committed
79
80
```

Pedro Cuenca's avatar
Pedro Cuenca committed
81
82
## Sliced attention for additional memory savings

83
For even additional memory savings, you can use a sliced version of attention that performs the computation in steps instead of all at once.
Patrick von Platen's avatar
Patrick von Platen committed
84

Pedro Cuenca's avatar
Pedro Cuenca committed
85
86
87
<Tip>
Attention slicing is useful even if a batch size of just 1 is used - as long as the model uses more than one attention head. If there is more than one attention head the *QK^T* attention matrix can be computed sequentially for each head which can save a significant amount of memory.
</Tip>
Patrick von Platen's avatar
Patrick von Platen committed
88

Pedro Cuenca's avatar
Pedro Cuenca committed
89
To perform the attention computation sequentially over each head, you only need to invoke [`~StableDiffusionPipeline.enable_attention_slicing`] in your pipeline before inference, like here:
Patrick von Platen's avatar
Patrick von Platen committed
90

Pedro Cuenca's avatar
Pedro Cuenca committed
91
92
93
```Python
import torch
from diffusers import StableDiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
94

Pedro Cuenca's avatar
Pedro Cuenca committed
95
96
97
98
99
100
101
102
103
104
105
106
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    revision="fp16",
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_attention_slicing()
with torch.autocast("cuda"):
    image = pipe(prompt).images[0]  
```
Patrick von Platen's avatar
Patrick von Platen committed
107

108
109
110
111
112
113
114
115
116
117
118
119
120
There's a small performance penalty of about 10% slower inference times, but this method allows you to use Stable Diffusion in as little as 3.2 GB of VRAM!

## Using Channels Last memory format

Channels last memory format is an alternative way of ordering NCHW tensors in memory preserving dimensions ordering. Channels last tensors ordered in such a way that channels become the densest dimension (aka storing images pixel-per-pixel). Since not all operators currently support channels last format it may result in a worst performance, so it's better to try it and see if it works for your model.

For example, in order to set the UNet model in our pipeline to use channels last format, we can use the following:

```python
print(pipe.unet.conv_out.state_dict()["weight"].stride())  # (2880, 9, 3, 1)
pipe.unet.to(memory_format=torch.channels_last)  # in-place operation
print(
    pipe.unet.conv_out.state_dict()["weight"].stride()
Yuta Hayashibe's avatar
Yuta Hayashibe committed
121
)  # (2880, 1, 960, 320) having a stride of 1 for the 2nd dimension proves that it works
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
```

## Tracing

Tracing runs an example input tensor through your model, and captures the operations that are invoked as that input makes its way through the model's layers so that an executable or `ScriptFunction` is returned that will be optimized using just-in-time compilation.

To trace our UNet model, we can use the following:

```python
import time
import torch
from diffusers import StableDiffusionPipeline
import functools

# torch disable grad
torch.set_grad_enabled(False)

# set variables
n_experiments = 2
unet_runs_per_experiment = 50

# load inputs
def generate_inputs():
    sample = torch.randn(2, 4, 64, 64).half().cuda()
    timestep = torch.rand(1).half().cuda() * 999
    encoder_hidden_states = torch.randn(2, 77, 768).half().cuda()
    return sample, timestep, encoder_hidden_states


pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    revision="fp16",
    torch_dtype=torch.float16,
).to("cuda")
unet = pipe.unet
unet.eval()
unet.to(memory_format=torch.channels_last)  # use channels_last memory format
unet.forward = functools.partial(unet.forward, return_dict=False)  # set return_dict=False as default

# warmup
for _ in range(3):
    with torch.inference_mode():
        inputs = generate_inputs()
        orig_output = unet(*inputs)

# trace
print("tracing..")
unet_traced = torch.jit.trace(unet, inputs)
unet_traced.eval()
print("done tracing")


# warmup and optimize graph
for _ in range(5):
    with torch.inference_mode():
        inputs = generate_inputs()
        orig_output = unet_traced(*inputs)


# benchmarking
with torch.inference_mode():
    for _ in range(n_experiments):
        torch.cuda.synchronize()
        start_time = time.time()
        for _ in range(unet_runs_per_experiment):
            orig_output = unet_traced(*inputs)
        torch.cuda.synchronize()
        print(f"unet traced inference took {time.time() - start_time:.2f} seconds")
    for _ in range(n_experiments):
        torch.cuda.synchronize()
        start_time = time.time()
        for _ in range(unet_runs_per_experiment):
            orig_output = unet(*inputs)
        torch.cuda.synchronize()
        print(f"unet inference took {time.time() - start_time:.2f} seconds")

# save the model
unet_traced.save("unet_traced.pt")
```

Then we can replace the `unet` attribute of the pipeline with the traced model like the following

```python
from diffusers import StableDiffusionPipeline
import torch
from dataclasses import dataclass


@dataclass
class UNet2DConditionOutput:
    sample: torch.FloatTensor


pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    revision="fp16",
    torch_dtype=torch.float16,
).to("cuda")

# use jitted unet
unet_traced = torch.jit.load("unet_traced.pt")
# del pipe.unet
class TracedUNet(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.in_channels = pipe.unet.in_channels
        self.device = pipe.unet.device

    def forward(self, latent_model_input, t, encoder_hidden_states):
        sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0]
        return UNet2DConditionOutput(sample=sample)


pipe.unet = TracedUNet()

with torch.inference_mode():
    image = pipe([prompt] * 1, num_inference_steps=50).images[0]
```