unet_motion_model.py 97 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
Dhruv Nair's avatar
Dhruv Nair committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15

from dataclasses import dataclass
Dhruv Nair's avatar
Dhruv Nair committed
16
17
18
19
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn
20
import torch.nn.functional as F
Dhruv Nair's avatar
Dhruv Nair committed
21

22
from ...configuration_utils import ConfigMixin, FrozenDict, register_to_config
23
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, UNet2DConditionLoadersMixin
24
from ...utils import BaseOutput, deprecate, logging
25
26
from ...utils.torch_utils import apply_freeu
from ..attention import BasicTransformerBlock
27
from ..attention_processor import (
Dhruv Nair's avatar
Dhruv Nair committed
28
29
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
30
    Attention,
Dhruv Nair's avatar
Dhruv Nair committed
31
32
33
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
34
    AttnProcessor2_0,
35
    FusedAttnProcessor2_0,
36
37
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
Dhruv Nair's avatar
Dhruv Nair committed
38
)
39
40
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
41
42
43
from ..resnet import Downsample2D, ResnetBlock2D, Upsample2D
from ..transformers.dual_transformer_2d import DualTransformer2DModel
from ..transformers.transformer_2d import Transformer2DModel
Dhruv Nair's avatar
Dhruv Nair committed
44
45
46
47
48
49
50
from .unet_2d_blocks import UNetMidBlock2DCrossAttn
from .unet_2d_condition import UNet2DConditionModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@dataclass
class UNetMotionOutput(BaseOutput):
    """
    The output of [`UNetMotionOutput`].

    Args:
        sample (`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.Tensor


class AnimateDiffTransformer3D(nn.Module):
    """
    A Transformer model for video-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlock` attention should contain a bias parameter.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        activation_fn (`str`, *optional*, defaults to `"geglu"`):
            Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported
            activation functions.
        norm_elementwise_affine (`bool`, *optional*):
            Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization.
        double_self_attention (`bool`, *optional*):
            Configure if each `TransformerBlock` should contain two self-attention layers.
        positional_embeddings: (`str`, *optional*):
            The type of positional embeddings to apply to the sequence input before passing use.
        num_positional_embeddings: (`int`, *optional*):
            The maximum length of the sequence over which to apply positional embeddings.
    """

    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        activation_fn: str = "geglu",
        norm_elementwise_affine: bool = True,
        double_self_attention: bool = True,
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        self.in_channels = in_channels

Aryan's avatar
Aryan committed
118
        self.norm = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        self.proj_in = nn.Linear(in_channels, inner_dim)

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    double_self_attention=double_self_attention,
                    norm_elementwise_affine=norm_elementwise_affine,
                    positional_embeddings=positional_embeddings,
                    num_positional_embeddings=num_positional_embeddings,
                )
                for _ in range(num_layers)
            ]
        )

        self.proj_out = nn.Linear(inner_dim, in_channels)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.LongTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        num_frames: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> torch.Tensor:
        """
        The [`AnimateDiffTransformer3D`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
                Input hidden_states.
            encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            num_frames (`int`, *optional*, defaults to 1):
                The number of frames to be processed per batch. This is used to reshape the hidden states.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

        Returns:
            torch.Tensor:
                The output tensor.
        """
        # 1. Input
        batch_frames, channel, height, width = hidden_states.shape
        batch_size = batch_frames // num_frames

        residual = hidden_states

        hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
        hidden_states = hidden_states.permute(0, 2, 1, 3, 4)

        hidden_states = self.norm(hidden_states)
        hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)

189
        hidden_states = self.proj_in(input=hidden_states)
190
191
192
193

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
194
                hidden_states=hidden_states,
195
196
197
198
199
200
201
                encoder_hidden_states=encoder_hidden_states,
                timestep=timestep,
                cross_attention_kwargs=cross_attention_kwargs,
                class_labels=class_labels,
            )

        # 3. Output
202
        hidden_states = self.proj_out(input=hidden_states)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        hidden_states = (
            hidden_states[None, None, :]
            .reshape(batch_size, height, width, num_frames, channel)
            .permute(0, 3, 4, 1, 2)
            .contiguous()
        )
        hidden_states = hidden_states.reshape(batch_frames, channel, height, width)

        output = hidden_states + residual
        return output


class DownBlockMotion(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
        temporal_num_attention_heads: Union[int, Tuple[int]] = 1,
        temporal_cross_attention_dim: Optional[int] = None,
        temporal_max_seq_length: int = 32,
        temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
235
        temporal_double_self_attention: bool = True,
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    ):
        super().__init__()
        resnets = []
        motion_modules = []

        # support for variable transformer layers per temporal block
        if isinstance(temporal_transformer_layers_per_block, int):
            temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
        elif len(temporal_transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"`temporal_transformer_layers_per_block` must be an integer or a tuple of integers of length {num_layers}"
            )

        # support for variable number of attention head per temporal layers
        if isinstance(temporal_num_attention_heads, int):
            temporal_num_attention_heads = (temporal_num_attention_heads,) * num_layers
        elif len(temporal_num_attention_heads) != num_layers:
            raise ValueError(
                f"`temporal_num_attention_heads` must be an integer or a tuple of integers of length {num_layers}"
            )

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            motion_modules.append(
                AnimateDiffTransformer3D(
                    num_attention_heads=temporal_num_attention_heads[i],
                    in_channels=out_channels,
                    num_layers=temporal_transformer_layers_per_block[i],
                    norm_num_groups=resnet_groups,
                    cross_attention_dim=temporal_cross_attention_dim,
                    attention_bias=False,
                    activation_fn="geglu",
                    positional_embeddings="sinusoidal",
                    num_positional_embeddings=temporal_max_seq_length,
                    attention_head_dim=out_channels // temporal_num_attention_heads[i],
285
                    double_self_attention=temporal_double_self_attention,
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.motion_modules = nn.ModuleList(motion_modules)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=downsample_padding,
                        name="op",
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        num_frames: int = 1,
        *args,
        **kwargs,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        output_states = ()

        blocks = zip(self.resnets, self.motion_modules)
        for resnet, motion_module in blocks:
325
            if torch.is_grad_enabled() and self.gradient_checkpointing:
326
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
327
            else:
328
                hidden_states = resnet(input_tensor=hidden_states, temb=temb)
Aryan's avatar
Aryan committed
329

330
331
332
333
334
335
            hidden_states = motion_module(hidden_states, num_frames=num_frames)

            output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
336
                hidden_states = downsampler(hidden_states=hidden_states)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

            output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class CrossAttnDownBlockMotion(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        downsample_padding: int = 1,
        add_downsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
        temporal_cross_attention_dim: Optional[int] = None,
        temporal_num_attention_heads: int = 8,
        temporal_max_seq_length: int = 32,
        temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
371
        temporal_double_self_attention: bool = True,
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    ):
        super().__init__()
        resnets = []
        attentions = []
        motion_modules = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        # support for variable transformer layers per block
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = (transformer_layers_per_block,) * num_layers
        elif len(transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}"
            )

        # support for variable transformer layers per temporal block
        if isinstance(temporal_transformer_layers_per_block, int):
            temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
        elif len(temporal_transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}"
            )

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=transformer_layers_per_block[i],
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                        attention_type=attention_type,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )

            motion_modules.append(
                AnimateDiffTransformer3D(
                    num_attention_heads=temporal_num_attention_heads,
                    in_channels=out_channels,
                    num_layers=temporal_transformer_layers_per_block[i],
                    norm_num_groups=resnet_groups,
                    cross_attention_dim=temporal_cross_attention_dim,
                    attention_bias=False,
                    activation_fn="geglu",
                    positional_embeddings="sinusoidal",
                    num_positional_embeddings=temporal_max_seq_length,
                    attention_head_dim=out_channels // temporal_num_attention_heads,
453
                    double_self_attention=temporal_double_self_attention,
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)
        self.motion_modules = nn.ModuleList(motion_modules)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=downsample_padding,
                        name="op",
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        num_frames: int = 1,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        additional_residuals: Optional[torch.Tensor] = None,
    ):
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        output_states = ()

        blocks = list(zip(self.resnets, self.attentions, self.motion_modules))
        for i, (resnet, attn, motion_module) in enumerate(blocks):
497
            if torch.is_grad_enabled() and self.gradient_checkpointing:
498
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
499
            else:
500
501
502
503
504
505
506
507
508
509
                hidden_states = resnet(input_tensor=hidden_states, temb=temb)

            hidden_states = attn(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
                attention_mask=attention_mask,
                encoder_attention_mask=encoder_attention_mask,
                return_dict=False,
            )[0]
Aryan's avatar
Aryan committed
510

511
            hidden_states = motion_module(hidden_states, num_frames=num_frames)
512
513
514
515
516
517
518
519
520

            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

            output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
521
                hidden_states = downsampler(hidden_states=hidden_states)
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

            output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class CrossAttnUpBlockMotion(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        resolution_idx: Optional[int] = None,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
        temporal_cross_attention_dim: Optional[int] = None,
        temporal_num_attention_heads: int = 8,
        temporal_max_seq_length: int = 32,
        temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
    ):
        super().__init__()
        resnets = []
        attentions = []
        motion_modules = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        # support for variable transformer layers per block
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = (transformer_layers_per_block,) * num_layers
        elif len(transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(transformer_layers_per_block)}"
            )

        # support for variable transformer layers per temporal block
        if isinstance(temporal_transformer_layers_per_block, int):
            temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
        elif len(temporal_transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(temporal_transformer_layers_per_block)}"
            )

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=transformer_layers_per_block[i],
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                        attention_type=attention_type,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            motion_modules.append(
                AnimateDiffTransformer3D(
                    num_attention_heads=temporal_num_attention_heads,
                    in_channels=out_channels,
                    num_layers=temporal_transformer_layers_per_block[i],
                    norm_num_groups=resnet_groups,
                    cross_attention_dim=temporal_cross_attention_dim,
                    attention_bias=False,
                    activation_fn="geglu",
                    positional_embeddings="sinusoidal",
                    num_positional_embeddings=temporal_max_seq_length,
                    attention_head_dim=out_channels // temporal_num_attention_heads,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)
        self.motion_modules = nn.ModuleList(motion_modules)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
        self.resolution_idx = resolution_idx

    def forward(
        self,
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        num_frames: int = 1,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

        blocks = zip(self.resnets, self.attentions, self.motion_modules)
        for resnet, attn, motion_module in blocks:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

697
            if torch.is_grad_enabled() and self.gradient_checkpointing:
698
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
699
            else:
700
701
702
703
704
705
706
707
708
709
                hidden_states = resnet(input_tensor=hidden_states, temb=temb)

            hidden_states = attn(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
                attention_mask=attention_mask,
                encoder_attention_mask=encoder_attention_mask,
                return_dict=False,
            )[0]
Aryan's avatar
Aryan committed
710

711
            hidden_states = motion_module(hidden_states, num_frames=num_frames)
712
713
714

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
715
                hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size)
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

        return hidden_states


class UpBlockMotion(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        resolution_idx: Optional[int] = None,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        temporal_cross_attention_dim: Optional[int] = None,
        temporal_num_attention_heads: int = 8,
        temporal_max_seq_length: int = 32,
        temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
    ):
        super().__init__()
        resnets = []
        motion_modules = []

        # support for variable transformer layers per temporal block
        if isinstance(temporal_transformer_layers_per_block, int):
            temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
        elif len(temporal_transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}"
            )

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

            motion_modules.append(
                AnimateDiffTransformer3D(
                    num_attention_heads=temporal_num_attention_heads,
                    in_channels=out_channels,
                    num_layers=temporal_transformer_layers_per_block[i],
                    norm_num_groups=resnet_groups,
                    cross_attention_dim=temporal_cross_attention_dim,
                    attention_bias=False,
                    activation_fn="geglu",
                    positional_embeddings="sinusoidal",
                    num_positional_embeddings=temporal_max_seq_length,
                    attention_head_dim=out_channels // temporal_num_attention_heads,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.motion_modules = nn.ModuleList(motion_modules)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
        self.resolution_idx = resolution_idx

    def forward(
        self,
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        temb: Optional[torch.Tensor] = None,
        upsample_size=None,
        num_frames: int = 1,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

        blocks = zip(self.resnets, self.motion_modules)

        for resnet, motion_module in blocks:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

841
            if torch.is_grad_enabled() and self.gradient_checkpointing:
842
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
843
            else:
844
                hidden_states = resnet(input_tensor=hidden_states, temb=temb)
Aryan's avatar
Aryan committed
845

846
847
848
849
            hidden_states = motion_module(hidden_states, num_frames=num_frames)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
850
                hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size)
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

        return hidden_states


class UNetMidBlockCrossAttnMotion(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        output_scale_factor: float = 1.0,
        cross_attention_dim: int = 1280,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
        temporal_num_attention_heads: int = 1,
        temporal_cross_attention_dim: Optional[int] = None,
        temporal_max_seq_length: int = 32,
        temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
    ):
        super().__init__()

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # support for variable transformer layers per block
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = (transformer_layers_per_block,) * num_layers
        elif len(transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"`transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}."
            )

        # support for variable transformer layers per temporal block
        if isinstance(temporal_transformer_layers_per_block, int):
            temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
        elif len(temporal_transformer_layers_per_block) != num_layers:
            raise ValueError(
                f"`temporal_transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}."
            )

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []
        motion_modules = []

        for i in range(num_layers):
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        num_attention_heads,
                        in_channels // num_attention_heads,
                        in_channels=in_channels,
                        num_layers=transformer_layers_per_block[i],
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        upcast_attention=upcast_attention,
                        attention_type=attention_type,
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        num_attention_heads,
                        in_channels // num_attention_heads,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            motion_modules.append(
                AnimateDiffTransformer3D(
                    num_attention_heads=temporal_num_attention_heads,
                    attention_head_dim=in_channels // temporal_num_attention_heads,
                    in_channels=in_channels,
                    num_layers=temporal_transformer_layers_per_block[i],
                    norm_num_groups=resnet_groups,
                    cross_attention_dim=temporal_cross_attention_dim,
                    attention_bias=False,
                    positional_embeddings="sinusoidal",
                    num_positional_embeddings=temporal_max_seq_length,
                    activation_fn="geglu",
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)
        self.motion_modules = nn.ModuleList(motion_modules)

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        num_frames: int = 1,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

995
        hidden_states = self.resnets[0](input_tensor=hidden_states, temb=temb)
996
997
998

        blocks = zip(self.attentions, self.resnets[1:], self.motion_modules)
        for attn, resnet, motion_module in blocks:
999
1000
1001
1002
1003
1004
1005
1006
1007
            hidden_states = attn(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
                attention_mask=attention_mask,
                encoder_attention_mask=encoder_attention_mask,
                return_dict=False,
            )[0]

1008
            if torch.is_grad_enabled() and self.gradient_checkpointing:
1009
1010
                hidden_states = self._gradient_checkpointing_func(
                    motion_module, hidden_states, None, None, None, num_frames, None
1011
                )
1012
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
1013
            else:
1014
                hidden_states = motion_module(hidden_states, None, None, None, num_frames, None)
1015
                hidden_states = resnet(input_tensor=hidden_states, temb=temb)
1016
1017
1018
1019

        return hidden_states


Dhruv Nair's avatar
Dhruv Nair committed
1020
1021
1022
class MotionModules(nn.Module):
    def __init__(
        self,
1023
1024
        in_channels: int,
        layers_per_block: int = 2,
1025
1026
        transformer_layers_per_block: Union[int, Tuple[int]] = 8,
        num_attention_heads: Union[int, Tuple[int]] = 8,
1027
1028
1029
1030
1031
        attention_bias: bool = False,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        norm_num_groups: int = 32,
        max_seq_length: int = 32,
Dhruv Nair's avatar
Dhruv Nair committed
1032
1033
1034
1035
    ):
        super().__init__()
        self.motion_modules = nn.ModuleList([])

1036
1037
1038
1039
1040
1041
1042
1043
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = (transformer_layers_per_block,) * layers_per_block
        elif len(transformer_layers_per_block) != layers_per_block:
            raise ValueError(
                f"The number of transformer layers per block must match the number of layers per block, "
                f"got {layers_per_block} and {len(transformer_layers_per_block)}"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1044
1045
        for i in range(layers_per_block):
            self.motion_modules.append(
1046
                AnimateDiffTransformer3D(
Dhruv Nair's avatar
Dhruv Nair committed
1047
                    in_channels=in_channels,
1048
                    num_layers=transformer_layers_per_block[i],
Dhruv Nair's avatar
Dhruv Nair committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=in_channels // num_attention_heads,
                    positional_embeddings="sinusoidal",
                    num_positional_embeddings=max_seq_length,
                )
            )


1061
class MotionAdapter(ModelMixin, ConfigMixin, FromOriginalModelMixin):
Dhruv Nair's avatar
Dhruv Nair committed
1062
1063
1064
    @register_to_config
    def __init__(
        self,
1065
        block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
1066
1067
        motion_layers_per_block: Union[int, Tuple[int]] = 2,
        motion_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]] = 1,
1068
        motion_mid_block_layers_per_block: int = 1,
1069
1070
        motion_transformer_layers_per_mid_block: Union[int, Tuple[int]] = 1,
        motion_num_attention_heads: Union[int, Tuple[int]] = 8,
1071
1072
1073
        motion_norm_num_groups: int = 32,
        motion_max_seq_length: int = 32,
        use_motion_mid_block: bool = True,
Dhruv Nair's avatar
Dhruv Nair committed
1074
        conv_in_channels: Optional[int] = None,
Dhruv Nair's avatar
Dhruv Nair committed
1075
1076
1077
1078
1079
1080
    ):
        """Container to store AnimateDiff Motion Modules

        Args:
            block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each UNet block.
1081
            motion_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 2):
Dhruv Nair's avatar
Dhruv Nair committed
1082
                The number of motion layers per UNet block.
1083
1084
            motion_transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple[int]]`, *optional*, defaults to 1):
                The number of transformer layers to use in each motion layer in each block.
Dhruv Nair's avatar
Dhruv Nair committed
1085
1086
            motion_mid_block_layers_per_block (`int`, *optional*, defaults to 1):
                The number of motion layers in the middle UNet block.
1087
1088
1089
            motion_transformer_layers_per_mid_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
                The number of transformer layers to use in each motion layer in the middle block.
            motion_num_attention_heads (`int` or `Tuple[int]`, *optional*, defaults to 8):
Dhruv Nair's avatar
Dhruv Nair committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
                The number of heads to use in each attention layer of the motion module.
            motion_norm_num_groups (`int`, *optional*, defaults to 32):
                The number of groups to use in each group normalization layer of the motion module.
            motion_max_seq_length (`int`, *optional*, defaults to 32):
                The maximum sequence length to use in the motion module.
            use_motion_mid_block (`bool`, *optional*, defaults to True):
                Whether to use a motion module in the middle of the UNet.
        """

        super().__init__()
        down_blocks = []
        up_blocks = []

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        if isinstance(motion_layers_per_block, int):
            motion_layers_per_block = (motion_layers_per_block,) * len(block_out_channels)
        elif len(motion_layers_per_block) != len(block_out_channels):
            raise ValueError(
                f"The number of motion layers per block must match the number of blocks, "
                f"got {len(block_out_channels)} and {len(motion_layers_per_block)}"
            )

        if isinstance(motion_transformer_layers_per_block, int):
            motion_transformer_layers_per_block = (motion_transformer_layers_per_block,) * len(block_out_channels)

        if isinstance(motion_transformer_layers_per_mid_block, int):
            motion_transformer_layers_per_mid_block = (
                motion_transformer_layers_per_mid_block,
            ) * motion_mid_block_layers_per_block
        elif len(motion_transformer_layers_per_mid_block) != motion_mid_block_layers_per_block:
            raise ValueError(
                f"The number of layers per mid block ({motion_mid_block_layers_per_block}) "
                f"must match the length of motion_transformer_layers_per_mid_block ({len(motion_transformer_layers_per_mid_block)})"
            )

        if isinstance(motion_num_attention_heads, int):
            motion_num_attention_heads = (motion_num_attention_heads,) * len(block_out_channels)
        elif len(motion_num_attention_heads) != len(block_out_channels):
            raise ValueError(
                f"The length of the attention head number tuple in the motion module must match the "
                f"number of block, got {len(motion_num_attention_heads)} and {len(block_out_channels)}"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1132
1133
1134
1135
1136
1137
        if conv_in_channels:
            # input
            self.conv_in = nn.Conv2d(conv_in_channels, block_out_channels[0], kernel_size=3, padding=1)
        else:
            self.conv_in = None

Dhruv Nair's avatar
Dhruv Nair committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
        for i, channel in enumerate(block_out_channels):
            output_channel = block_out_channels[i]
            down_blocks.append(
                MotionModules(
                    in_channels=output_channel,
                    norm_num_groups=motion_norm_num_groups,
                    cross_attention_dim=None,
                    activation_fn="geglu",
                    attention_bias=False,
1147
                    num_attention_heads=motion_num_attention_heads[i],
Dhruv Nair's avatar
Dhruv Nair committed
1148
                    max_seq_length=motion_max_seq_length,
1149
1150
                    layers_per_block=motion_layers_per_block[i],
                    transformer_layers_per_block=motion_transformer_layers_per_block[i],
Dhruv Nair's avatar
Dhruv Nair committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
                )
            )

        if use_motion_mid_block:
            self.mid_block = MotionModules(
                in_channels=block_out_channels[-1],
                norm_num_groups=motion_norm_num_groups,
                cross_attention_dim=None,
                activation_fn="geglu",
                attention_bias=False,
1161
                num_attention_heads=motion_num_attention_heads[-1],
Dhruv Nair's avatar
Dhruv Nair committed
1162
                max_seq_length=motion_max_seq_length,
1163
1164
                layers_per_block=motion_mid_block_layers_per_block,
                transformer_layers_per_block=motion_transformer_layers_per_mid_block,
Dhruv Nair's avatar
Dhruv Nair committed
1165
1166
1167
1168
1169
1170
            )
        else:
            self.mid_block = None

        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
1171
1172
1173
1174

        reversed_motion_layers_per_block = list(reversed(motion_layers_per_block))
        reversed_motion_transformer_layers_per_block = list(reversed(motion_transformer_layers_per_block))
        reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads))
Dhruv Nair's avatar
Dhruv Nair committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
        for i, channel in enumerate(reversed_block_out_channels):
            output_channel = reversed_block_out_channels[i]
            up_blocks.append(
                MotionModules(
                    in_channels=output_channel,
                    norm_num_groups=motion_norm_num_groups,
                    cross_attention_dim=None,
                    activation_fn="geglu",
                    attention_bias=False,
1184
                    num_attention_heads=reversed_motion_num_attention_heads[i],
Dhruv Nair's avatar
Dhruv Nair committed
1185
                    max_seq_length=motion_max_seq_length,
1186
1187
                    layers_per_block=reversed_motion_layers_per_block[i] + 1,
                    transformer_layers_per_block=reversed_motion_transformer_layers_per_block[i],
Dhruv Nair's avatar
Dhruv Nair committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                )
            )

        self.down_blocks = nn.ModuleList(down_blocks)
        self.up_blocks = nn.ModuleList(up_blocks)

    def forward(self, sample):
        pass


1198
class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
Dhruv Nair's avatar
Dhruv Nair committed
1199
1200
1201
1202
1203
1204
1205
    r"""
    A modified conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a
    sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
    """
1206

Dhruv Nair's avatar
Dhruv Nair committed
1207
    _supports_gradient_checkpointing = True
Aryan's avatar
Aryan committed
1208
    _skip_layerwise_casting_patterns = ["norm"]
Dhruv Nair's avatar
Dhruv Nair committed
1209
1210
1211
1212
1213
1214
1215

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
1216
        down_block_types: Tuple[str, ...] = (
Dhruv Nair's avatar
Dhruv Nair committed
1217
1218
1219
1220
1221
            "CrossAttnDownBlockMotion",
            "CrossAttnDownBlockMotion",
            "CrossAttnDownBlockMotion",
            "DownBlockMotion",
        ),
1222
        up_block_types: Tuple[str, ...] = (
Dhruv Nair's avatar
Dhruv Nair committed
1223
1224
1225
1226
1227
            "UpBlockMotion",
            "CrossAttnUpBlockMotion",
            "CrossAttnUpBlockMotion",
            "CrossAttnUpBlockMotion",
        ),
1228
        block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
1229
        layers_per_block: Union[int, Tuple[int]] = 2,
Dhruv Nair's avatar
Dhruv Nair committed
1230
1231
1232
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
1233
        norm_num_groups: int = 32,
Dhruv Nair's avatar
Dhruv Nair committed
1234
1235
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
Aryan's avatar
Aryan committed
1236
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
1237
1238
1239
1240
1241
        reverse_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None,
        temporal_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        reverse_temporal_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None,
        transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None,
        temporal_transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = 1,
Dhruv Nair's avatar
Dhruv Nair committed
1242
        use_linear_projection: bool = False,
1243
1244
        num_attention_heads: Union[int, Tuple[int, ...]] = 8,
        motion_max_seq_length: int = 32,
1245
1246
1247
1248
        motion_num_attention_heads: Union[int, Tuple[int, ...]] = 8,
        reverse_motion_num_attention_heads: Optional[Union[int, Tuple[int, ...], Tuple[Tuple[int, ...], ...]]] = None,
        use_motion_mid_block: bool = True,
        mid_block_layers: int = 1,
1249
1250
        encoder_hid_dim: Optional[int] = None,
        encoder_hid_dim_type: Optional[str] = None,
Aryan's avatar
Aryan committed
1251
1252
1253
        addition_embed_type: Optional[str] = None,
        addition_time_embed_dim: Optional[int] = None,
        projection_class_embeddings_input_dim: Optional[int] = None,
1254
        time_cond_proj_dim: Optional[int] = None,
Dhruv Nair's avatar
Dhruv Nair committed
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
    ):
        super().__init__()

        self.sample_size = sample_size

        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Aryan's avatar
Aryan committed
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

        if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
            for layer_number_per_block in transformer_layers_per_block:
                if isinstance(layer_number_per_block, list):
                    raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
        if (
            isinstance(temporal_transformer_layers_per_block, list)
            and reverse_temporal_transformer_layers_per_block is None
        ):
            for layer_number_per_block in temporal_transformer_layers_per_block:
                if isinstance(layer_number_per_block, list):
                    raise ValueError(
                        "Must provide 'reverse_temporal_transformer_layers_per_block` if using asymmetrical motion module in UNet."
                    )

Dhruv Nair's avatar
Dhruv Nair committed
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
        # input
        conv_in_kernel = 3
        conv_out_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        time_embed_dim = block_out_channels[0] * 4
        self.time_proj = Timesteps(block_out_channels[0], True, 0)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(
1315
            timestep_input_dim, time_embed_dim, act_fn=act_fn, cond_proj_dim=time_cond_proj_dim
Dhruv Nair's avatar
Dhruv Nair committed
1316
1317
        )

1318
1319
1320
        if encoder_hid_dim_type is None:
            self.encoder_hid_proj = None

Aryan's avatar
Aryan committed
1321
1322
1323
1324
        if addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, True, 0)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)

Dhruv Nair's avatar
Dhruv Nair committed
1325
1326
1327
1328
1329
1330
1331
        # class embedding
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Aryan's avatar
Aryan committed
1332
1333
1334
1335
1336
1337
1338
1339
1340
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
        if isinstance(reverse_transformer_layers_per_block, int):
            reverse_transformer_layers_per_block = [reverse_transformer_layers_per_block] * len(down_block_types)

        if isinstance(temporal_transformer_layers_per_block, int):
            temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types)

        if isinstance(reverse_temporal_transformer_layers_per_block, int):
            reverse_temporal_transformer_layers_per_block = [reverse_temporal_transformer_layers_per_block] * len(
                down_block_types
            )

        if isinstance(motion_num_attention_heads, int):
            motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types)

Dhruv Nair's avatar
Dhruv Nair committed
1355
1356
1357
1358
1359
1360
1361
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
            if down_block_type == "CrossAttnDownBlockMotion":
                down_block = CrossAttnDownBlockMotion(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    temb_channels=time_embed_dim,
                    num_layers=layers_per_block[i],
                    transformer_layers_per_block=transformer_layers_per_block[i],
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    num_attention_heads=num_attention_heads[i],
                    cross_attention_dim=cross_attention_dim[i],
                    downsample_padding=downsample_padding,
                    add_downsample=not is_final_block,
                    use_linear_projection=use_linear_projection,
                    temporal_num_attention_heads=motion_num_attention_heads[i],
                    temporal_max_seq_length=motion_max_seq_length,
                    temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
                )
            elif down_block_type == "DownBlockMotion":
                down_block = DownBlockMotion(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    temb_channels=time_embed_dim,
                    num_layers=layers_per_block[i],
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    add_downsample=not is_final_block,
                    downsample_padding=downsample_padding,
                    temporal_num_attention_heads=motion_num_attention_heads[i],
                    temporal_max_seq_length=motion_max_seq_length,
                    temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
                )
            else:
                raise ValueError(
                    "Invalid `down_block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`"
                )

Dhruv Nair's avatar
Dhruv Nair committed
1401
1402
1403
            self.down_blocks.append(down_block)

        # mid
1404
1405
1406
1407
1408
        if transformer_layers_per_mid_block is None:
            transformer_layers_per_mid_block = (
                transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1
            )

Dhruv Nair's avatar
Dhruv Nair committed
1409
1410
1411
1412
1413
1414
1415
        if use_motion_mid_block:
            self.mid_block = UNetMidBlockCrossAttnMotion(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Aryan's avatar
Aryan committed
1416
                cross_attention_dim=cross_attention_dim[-1],
Dhruv Nair's avatar
Dhruv Nair committed
1417
1418
1419
                num_attention_heads=num_attention_heads[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=False,
1420
                use_linear_projection=use_linear_projection,
1421
1422
                num_layers=mid_block_layers,
                temporal_num_attention_heads=motion_num_attention_heads[-1],
Dhruv Nair's avatar
Dhruv Nair committed
1423
                temporal_max_seq_length=motion_max_seq_length,
1424
1425
                transformer_layers_per_block=transformer_layers_per_mid_block,
                temporal_transformer_layers_per_block=temporal_transformer_layers_per_mid_block,
Dhruv Nair's avatar
Dhruv Nair committed
1426
1427
1428
1429
1430
1431
1432
1433
1434
            )

        else:
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Aryan's avatar
Aryan committed
1435
                cross_attention_dim=cross_attention_dim[-1],
Dhruv Nair's avatar
Dhruv Nair committed
1436
1437
1438
                num_attention_heads=num_attention_heads[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=False,
1439
                use_linear_projection=use_linear_projection,
1440
1441
                num_layers=mid_block_layers,
                transformer_layers_per_block=transformer_layers_per_mid_block,
Dhruv Nair's avatar
Dhruv Nair committed
1442
1443
1444
1445
1446
1447
1448
1449
            )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))
Aryan's avatar
Aryan committed
1450
1451
        reversed_layers_per_block = list(reversed(layers_per_block))
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
1452
1453
1454
1455
1456
1457
1458
        reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads))

        if reverse_transformer_layers_per_block is None:
            reverse_transformer_layers_per_block = list(reversed(transformer_layers_per_block))

        if reverse_temporal_transformer_layers_per_block is None:
            reverse_temporal_transformer_layers_per_block = list(reversed(temporal_transformer_layers_per_block))
Dhruv Nair's avatar
Dhruv Nair committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
            if up_block_type == "CrossAttnUpBlockMotion":
                up_block = CrossAttnUpBlockMotion(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    temb_channels=time_embed_dim,
                    resolution_idx=i,
                    num_layers=reversed_layers_per_block[i] + 1,
                    transformer_layers_per_block=reverse_transformer_layers_per_block[i],
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    num_attention_heads=reversed_num_attention_heads[i],
                    cross_attention_dim=reversed_cross_attention_dim[i],
                    add_upsample=add_upsample,
                    use_linear_projection=use_linear_projection,
                    temporal_num_attention_heads=reversed_motion_num_attention_heads[i],
                    temporal_max_seq_length=motion_max_seq_length,
                    temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i],
                )
            elif up_block_type == "UpBlockMotion":
                up_block = UpBlockMotion(
                    in_channels=input_channel,
                    prev_output_channel=prev_output_channel,
                    out_channels=output_channel,
                    temb_channels=time_embed_dim,
                    resolution_idx=i,
                    num_layers=reversed_layers_per_block[i] + 1,
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    add_upsample=add_upsample,
                    temporal_num_attention_heads=reversed_motion_num_attention_heads[i],
                    temporal_max_seq_length=motion_max_seq_length,
                    temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i],
                )
            else:
                raise ValueError(
                    "Invalid `up_block_type` encountered. Must be one of `CrossAttnUpBlockMotion` or `UpBlockMotion`"
                )

Dhruv Nair's avatar
Dhruv Nair committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )

    @classmethod
    def from_unet2d(
        cls,
        unet: UNet2DConditionModel,
        motion_adapter: Optional[MotionAdapter] = None,
        load_weights: bool = True,
    ):
        has_motion_adapter = motion_adapter is not None

1543
1544
1545
        if has_motion_adapter:
            motion_adapter.to(device=unet.device)

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
            # check compatibility of number of blocks
            if len(unet.config["down_block_types"]) != len(motion_adapter.config["block_out_channels"]):
                raise ValueError("Incompatible Motion Adapter, got different number of blocks")

            # check layers compatibility for each block
            if isinstance(unet.config["layers_per_block"], int):
                expanded_layers_per_block = [unet.config["layers_per_block"]] * len(unet.config["down_block_types"])
            else:
                expanded_layers_per_block = list(unet.config["layers_per_block"])
            if isinstance(motion_adapter.config["motion_layers_per_block"], int):
                expanded_adapter_layers_per_block = [motion_adapter.config["motion_layers_per_block"]] * len(
                    motion_adapter.config["block_out_channels"]
                )
            else:
                expanded_adapter_layers_per_block = list(motion_adapter.config["motion_layers_per_block"])
            if expanded_layers_per_block != expanded_adapter_layers_per_block:
                raise ValueError("Incompatible Motion Adapter, got different number of layers per block")

Dhruv Nair's avatar
Dhruv Nair committed
1564
        # based on https://github.com/guoyww/AnimateDiff/blob/895f3220c06318ea0760131ec70408b466c49333/animatediff/models/unet.py#L459
1565
        config = dict(unet.config)
Dhruv Nair's avatar
Dhruv Nair committed
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
        config["_class_name"] = cls.__name__

        down_blocks = []
        for down_blocks_type in config["down_block_types"]:
            if "CrossAttn" in down_blocks_type:
                down_blocks.append("CrossAttnDownBlockMotion")
            else:
                down_blocks.append("DownBlockMotion")
        config["down_block_types"] = down_blocks

        up_blocks = []
        for down_blocks_type in config["up_block_types"]:
            if "CrossAttn" in down_blocks_type:
                up_blocks.append("CrossAttnUpBlockMotion")
            else:
                up_blocks.append("UpBlockMotion")
        config["up_block_types"] = up_blocks

        if has_motion_adapter:
            config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"]
            config["motion_max_seq_length"] = motion_adapter.config["motion_max_seq_length"]
            config["use_motion_mid_block"] = motion_adapter.config["use_motion_mid_block"]
1588
1589
1590
1591
1592
1593
1594
1595
            config["layers_per_block"] = motion_adapter.config["motion_layers_per_block"]
            config["temporal_transformer_layers_per_mid_block"] = motion_adapter.config[
                "motion_transformer_layers_per_mid_block"
            ]
            config["temporal_transformer_layers_per_block"] = motion_adapter.config[
                "motion_transformer_layers_per_block"
            ]
            config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"]
Dhruv Nair's avatar
Dhruv Nair committed
1596

Dhruv Nair's avatar
Dhruv Nair committed
1597
1598
1599
1600
            # For PIA UNets we need to set the number input channels to 9
            if motion_adapter.config["conv_in_channels"]:
                config["in_channels"] = motion_adapter.config["conv_in_channels"]

Dhruv Nair's avatar
Dhruv Nair committed
1601
1602
1603
1604
        # Need this for backwards compatibility with UNet2DConditionModel checkpoints
        if not config.get("num_attention_heads"):
            config["num_attention_heads"] = config["attention_head_dim"]

1605
1606
1607
        expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)
        config = FrozenDict({k: config.get(k) for k in config if k in expected_kwargs or k in optional_kwargs})
        config["_class_name"] = cls.__name__
Dhruv Nair's avatar
Dhruv Nair committed
1608
1609
1610
1611
1612
        model = cls.from_config(config)

        if not load_weights:
            return model

Dhruv Nair's avatar
Dhruv Nair committed
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
        # Logic for loading PIA UNets which allow the first 4 channels to be any UNet2DConditionModel conv_in weight
        # while the last 5 channels must be PIA conv_in weights.
        if has_motion_adapter and motion_adapter.config["conv_in_channels"]:
            model.conv_in = motion_adapter.conv_in
            updated_conv_in_weight = torch.cat(
                [unet.conv_in.weight, motion_adapter.conv_in.weight[:, 4:, :, :]], dim=1
            )
            model.conv_in.load_state_dict({"weight": updated_conv_in_weight, "bias": unet.conv_in.bias})
        else:
            model.conv_in.load_state_dict(unet.conv_in.state_dict())

Dhruv Nair's avatar
Dhruv Nair committed
1624
1625
1626
        model.time_proj.load_state_dict(unet.time_proj.state_dict())
        model.time_embedding.load_state_dict(unet.time_embedding.state_dict())

1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
        if any(
            isinstance(proc, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0))
            for proc in unet.attn_processors.values()
        ):
            attn_procs = {}
            for name, processor in unet.attn_processors.items():
                if name.endswith("attn1.processor"):
                    attn_processor_class = (
                        AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
                    )
                    attn_procs[name] = attn_processor_class()
                else:
                    attn_processor_class = (
                        IPAdapterAttnProcessor2_0
                        if hasattr(F, "scaled_dot_product_attention")
                        else IPAdapterAttnProcessor
                    )
                    attn_procs[name] = attn_processor_class(
                        hidden_size=processor.hidden_size,
                        cross_attention_dim=processor.cross_attention_dim,
                        scale=processor.scale,
                        num_tokens=processor.num_tokens,
                    )
            for name, processor in model.attn_processors.items():
                if name not in attn_procs:
                    attn_procs[name] = processor.__class__()
            model.set_attn_processor(attn_procs)
            model.config.encoder_hid_dim_type = "ip_image_proj"
            model.encoder_hid_proj = unet.encoder_hid_proj

Dhruv Nair's avatar
Dhruv Nair committed
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
        for i, down_block in enumerate(unet.down_blocks):
            model.down_blocks[i].resnets.load_state_dict(down_block.resnets.state_dict())
            if hasattr(model.down_blocks[i], "attentions"):
                model.down_blocks[i].attentions.load_state_dict(down_block.attentions.state_dict())
            if model.down_blocks[i].downsamplers:
                model.down_blocks[i].downsamplers.load_state_dict(down_block.downsamplers.state_dict())

        for i, up_block in enumerate(unet.up_blocks):
            model.up_blocks[i].resnets.load_state_dict(up_block.resnets.state_dict())
            if hasattr(model.up_blocks[i], "attentions"):
                model.up_blocks[i].attentions.load_state_dict(up_block.attentions.state_dict())
            if model.up_blocks[i].upsamplers:
                model.up_blocks[i].upsamplers.load_state_dict(up_block.upsamplers.state_dict())

        model.mid_block.resnets.load_state_dict(unet.mid_block.resnets.state_dict())
        model.mid_block.attentions.load_state_dict(unet.mid_block.attentions.state_dict())

        if unet.conv_norm_out is not None:
            model.conv_norm_out.load_state_dict(unet.conv_norm_out.state_dict())
        if unet.conv_act is not None:
            model.conv_act.load_state_dict(unet.conv_act.state_dict())
        model.conv_out.load_state_dict(unet.conv_out.state_dict())

        if has_motion_adapter:
            model.load_motion_modules(motion_adapter)

        # ensure that the Motion UNet is the same dtype as the UNet2DConditionModel
        model.to(unet.dtype)

        return model

1688
    def freeze_unet2d_params(self) -> None:
Dhruv Nair's avatar
Dhruv Nair committed
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
        """Freeze the weights of just the UNet2DConditionModel, and leave the motion modules
        unfrozen for fine tuning.
        """
        # Freeze everything
        for param in self.parameters():
            param.requires_grad = False

        # Unfreeze Motion Modules
        for down_block in self.down_blocks:
            motion_modules = down_block.motion_modules
            for param in motion_modules.parameters():
                param.requires_grad = True

        for up_block in self.up_blocks:
            motion_modules = up_block.motion_modules
            for param in motion_modules.parameters():
                param.requires_grad = True

        if hasattr(self.mid_block, "motion_modules"):
            motion_modules = self.mid_block.motion_modules
            for param in motion_modules.parameters():
                param.requires_grad = True

1712
    def load_motion_modules(self, motion_adapter: Optional[MotionAdapter]) -> None:
Dhruv Nair's avatar
Dhruv Nair committed
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
        for i, down_block in enumerate(motion_adapter.down_blocks):
            self.down_blocks[i].motion_modules.load_state_dict(down_block.motion_modules.state_dict())
        for i, up_block in enumerate(motion_adapter.up_blocks):
            self.up_blocks[i].motion_modules.load_state_dict(up_block.motion_modules.state_dict())

        # to support older motion modules that don't have a mid_block
        if hasattr(self.mid_block, "motion_modules"):
            self.mid_block.motion_modules.load_state_dict(motion_adapter.mid_block.motion_modules.state_dict())

    def save_motion_modules(
        self,
        save_directory: str,
        is_main_process: bool = True,
        safe_serialization: bool = True,
        variant: Optional[str] = None,
        push_to_hub: bool = False,
        **kwargs,
1730
    ) -> None:
Dhruv Nair's avatar
Dhruv Nair committed
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
        state_dict = self.state_dict()

        # Extract all motion modules
        motion_state_dict = {}
        for k, v in state_dict.items():
            if "motion_modules" in k:
                motion_state_dict[k] = v

        adapter = MotionAdapter(
            block_out_channels=self.config["block_out_channels"],
            motion_layers_per_block=self.config["layers_per_block"],
            motion_norm_num_groups=self.config["norm_num_groups"],
            motion_num_attention_heads=self.config["motion_num_attention_heads"],
            motion_max_seq_length=self.config["motion_max_seq_length"],
            use_motion_mid_block=self.config["use_motion_mid_block"],
        )
        adapter.load_state_dict(motion_state_dict)
        adapter.save_pretrained(
            save_directory=save_directory,
            is_main_process=is_main_process,
            safe_serialization=safe_serialization,
            variant=variant,
            push_to_hub=push_to_hub,
            **kwargs,
        )

    @property
1758
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
Dhruv Nair's avatar
Dhruv Nair committed
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
1770
                processors[f"{name}.processor"] = module.get_processor()
Dhruv Nair's avatar
Dhruv Nair committed
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

1782
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
1783
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
Dhruv Nair's avatar
Dhruv Nair committed
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
1807
                    module.set_processor(processor)
Dhruv Nair's avatar
Dhruv Nair committed
1808
                else:
1809
                    module.set_processor(processor.pop(f"{name}.processor"))
Dhruv Nair's avatar
Dhruv Nair committed
1810
1811
1812
1813
1814
1815
1816

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

1817
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
Dhruv Nair's avatar
Dhruv Nair committed
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

1846
    def disable_forward_chunking(self) -> None:
Dhruv Nair's avatar
Dhruv Nair committed
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, None, 0)

1857
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
1858
    def set_default_attn_processor(self) -> None:
Dhruv Nair's avatar
Dhruv Nair committed
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

1871
        self.set_attn_processor(processor)
Dhruv Nair's avatar
Dhruv Nair committed
1872

1873
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
1874
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float) -> None:
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1875
        r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
Dhruv Nair's avatar
Dhruv Nair committed
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

1898
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
1899
    def disable_freeu(self) -> None:
Dhruv Nair's avatar
Dhruv Nair committed
1900
1901
1902
1903
1904
1905
1906
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
                    setattr(upsample_block, k, None)

1907
1908
1909
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
1910
1911
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
1912

Steven Liu's avatar
Steven Liu committed
1913
        > [!WARNING] > This API is 🧪 experimental.
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

1927
1928
        self.set_attn_processor(FusedAttnProcessor2_0())

1929
1930
1931
1932
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

Steven Liu's avatar
Steven Liu committed
1933
        > [!WARNING] > This API is 🧪 experimental.
1934
1935
1936
1937
1938

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

Dhruv Nair's avatar
Dhruv Nair committed
1939
1940
    def forward(
        self,
1941
        sample: torch.Tensor,
Dhruv Nair's avatar
Dhruv Nair committed
1942
1943
1944
1945
1946
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1947
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
Dhruv Nair's avatar
Dhruv Nair committed
1948
1949
1950
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        return_dict: bool = True,
1951
    ) -> Union[UNetMotionOutput, Tuple[torch.Tensor]]:
Dhruv Nair's avatar
Dhruv Nair committed
1952
1953
1954
1955
        r"""
        The [`UNetMotionModel`] forward method.

        Args:
1956
            sample (`torch.Tensor`):
Dhruv Nair's avatar
Dhruv Nair committed
1957
                The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`.
1958
1959
            timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
Dhruv Nair's avatar
Dhruv Nair committed
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
            return_dict (`bool`, *optional*, defaults to `True`):
1977
                Whether or not to return a [`~models.unets.unet_motion_model.UNetMotionOutput`] instead of a plain
Dhruv Nair's avatar
Dhruv Nair committed
1978
1979
1980
                tuple.

        Returns:
1981
1982
            [`~models.unets.unet_motion_model.UNetMotionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unets.unet_motion_model.UNetMotionOutput`] is returned,
1983
                otherwise a `tuple` is returned where the first element is the sample tensor.
Dhruv Nair's avatar
Dhruv Nair committed
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
2010
            is_npu = sample.device.type == "npu"
Dhruv Nair's avatar
Dhruv Nair committed
2011
            if isinstance(timestep, float):
2012
                dtype = torch.float32 if (is_mps or is_npu) else torch.float64
Dhruv Nair's avatar
Dhruv Nair committed
2013
            else:
2014
                dtype = torch.int32 if (is_mps or is_npu) else torch.int64
Dhruv Nair's avatar
Dhruv Nair committed
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        num_frames = sample.shape[2]
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)
Aryan's avatar
Aryan committed
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
        aug_emb = None

        if self.config.addition_embed_type == "text_time":
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )

            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))

            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)

        emb = emb if aug_emb is None else emb + aug_emb
2053
        emb = emb.repeat_interleave(num_frames, dim=0, output_size=emb.shape[0] * num_frames)
2054
2055
2056
2057
2058
2059
2060

        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
2061
            image_embeds = self.encoder_hid_proj(image_embeds)
2062
2063
2064
2065
            image_embeds = [
                image_embed.repeat_interleave(num_frames, dim=0, output_size=image_embed.shape[0] * num_frames)
                for image_embed in image_embeds
            ]
2066
            encoder_hidden_states = (encoder_hidden_states, image_embeds)
Dhruv Nair's avatar
Dhruv Nair committed
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168

        # 2. pre-process
        sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)

            down_block_res_samples += res_samples

        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            # To support older versions of motion modules that don't have a mid_block
            if hasattr(self.mid_block, "motion_modules"):
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )

        if mid_block_additional_residual is not None:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    num_frames=num_frames,
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)

        sample = self.conv_out(sample)

        # reshape to (batch, channel, framerate, width, height)
        sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)

        if not return_dict:
            return (sample,)

2169
        return UNetMotionOutput(sample=sample)