resnet_flax.py 4.62 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17
import flax.linen as nn
import jax
import jax.numpy as jnp

Sayak Paul's avatar
Sayak Paul committed
18
19
20
21
22
from ..utils import logging


logger = logging.get_logger(__name__)

23
24
25
26
27
28

class FlaxUpsample2D(nn.Module):
    out_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
Sayak Paul's avatar
Sayak Paul committed
29
30
31
32
33
        logger.warning(
            "Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
            "recommend migrating to PyTorch classes or pinning your version of Diffusers."
        )

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        self.conv = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        batch, height, width, channels = hidden_states.shape
        hidden_states = jax.image.resize(
            hidden_states,
            shape=(batch, height * 2, width * 2, channels),
            method="nearest",
        )
        hidden_states = self.conv(hidden_states)
        return hidden_states


class FlaxDownsample2D(nn.Module):
    out_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
Sayak Paul's avatar
Sayak Paul committed
58
59
60
61
62
        logger.warning(
            "Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
            "recommend migrating to PyTorch classes or pinning your version of Diffusers."
        )

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.conv = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(2, 2),
            padding=((1, 1), (1, 1)),  # padding="VALID",
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        # pad = ((0, 0), (0, 1), (0, 1), (0, 0))  # pad height and width dim
        # hidden_states = jnp.pad(hidden_states, pad_width=pad)
        hidden_states = self.conv(hidden_states)
        return hidden_states


class FlaxResnetBlock2D(nn.Module):
    in_channels: int
    out_channels: int = None
    dropout_prob: float = 0.0
    use_nin_shortcut: bool = None
    dtype: jnp.dtype = jnp.float32

    def setup(self):
Sayak Paul's avatar
Sayak Paul committed
86
87
88
89
90
        logger.warning(
            "Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
            "recommend migrating to PyTorch classes or pinning your version of Diffusers."
        )

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        out_channels = self.in_channels if self.out_channels is None else self.out_channels

        self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5)
        self.conv1 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype)

        self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5)
        self.dropout = nn.Dropout(self.dropout_prob)
        self.conv2 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut

        self.conv_shortcut = None
        if use_nin_shortcut:
            self.conv_shortcut = nn.Conv(
                out_channels,
                kernel_size=(1, 1),
                strides=(1, 1),
                padding="VALID",
                dtype=self.dtype,
            )

    def __call__(self, hidden_states, temb, deterministic=True):
        residual = hidden_states
        hidden_states = self.norm1(hidden_states)
        hidden_states = nn.swish(hidden_states)
        hidden_states = self.conv1(hidden_states)

        temb = self.time_emb_proj(nn.swish(temb))
        temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1)
        hidden_states = hidden_states + temb

        hidden_states = self.norm2(hidden_states)
        hidden_states = nn.swish(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            residual = self.conv_shortcut(residual)

        return hidden_states + residual