controlnet_flax.py 16.8 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
YiYi Xu's avatar
YiYi Xu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Optional, Tuple, Union
YiYi Xu's avatar
YiYi Xu committed
15
16
17
18
19
20
21

import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

22
from ...configuration_utils import ConfigMixin, flax_register_to_config
Sayak Paul's avatar
Sayak Paul committed
23
from ...utils import BaseOutput, logging
24
25
26
from ..embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from ..modeling_flax_utils import FlaxModelMixin
from ..unets.unet_2d_blocks_flax import (
YiYi Xu's avatar
YiYi Xu committed
27
28
29
30
31
32
    FlaxCrossAttnDownBlock2D,
    FlaxDownBlock2D,
    FlaxUNetMidBlock2DCrossAttn,
)


Sayak Paul's avatar
Sayak Paul committed
33
34
35
logger = logging.get_logger(__name__)


YiYi Xu's avatar
YiYi Xu committed
36
37
@flax.struct.dataclass
class FlaxControlNetOutput(BaseOutput):
Steven Liu's avatar
Steven Liu committed
38
39
40
41
42
43
44
45
    """
    The output of [`FlaxControlNetModel`].

    Args:
        down_block_res_samples (`jnp.ndarray`):
        mid_block_res_sample (`jnp.ndarray`):
    """

YiYi Xu's avatar
YiYi Xu committed
46
47
48
49
50
51
    down_block_res_samples: jnp.ndarray
    mid_block_res_sample: jnp.ndarray


class FlaxControlNetConditioningEmbedding(nn.Module):
    conditioning_embedding_channels: int
52
    block_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
YiYi Xu's avatar
YiYi Xu committed
53
54
    dtype: jnp.dtype = jnp.float32

55
    def setup(self) -> None:
Sayak Paul's avatar
Sayak Paul committed
56
57
58
59
60
        logger.warning(
            "Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
            "recommend migrating to PyTorch classes or pinning your version of Diffusers."
        )

YiYi Xu's avatar
YiYi Xu committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        self.conv_in = nn.Conv(
            self.block_out_channels[0],
            kernel_size=(3, 3),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        blocks = []
        for i in range(len(self.block_out_channels) - 1):
            channel_in = self.block_out_channels[i]
            channel_out = self.block_out_channels[i + 1]
            conv1 = nn.Conv(
                channel_in,
                kernel_size=(3, 3),
                padding=((1, 1), (1, 1)),
                dtype=self.dtype,
            )
            blocks.append(conv1)
            conv2 = nn.Conv(
                channel_out,
                kernel_size=(3, 3),
                strides=(2, 2),
                padding=((1, 1), (1, 1)),
                dtype=self.dtype,
            )
            blocks.append(conv2)
        self.blocks = blocks

        self.conv_out = nn.Conv(
            self.conditioning_embedding_channels,
            kernel_size=(3, 3),
            padding=((1, 1), (1, 1)),
            kernel_init=nn.initializers.zeros_init(),
            bias_init=nn.initializers.zeros_init(),
            dtype=self.dtype,
        )

98
    def __call__(self, conditioning: jnp.ndarray) -> jnp.ndarray:
YiYi Xu's avatar
YiYi Xu committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        embedding = self.conv_in(conditioning)
        embedding = nn.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = nn.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


@flax_register_to_config
class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
    r"""
Steven Liu's avatar
Steven Liu committed
114
115
116
117
118
119
120
    A ControlNet model.

    This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods
    implemented for all models (such as downloading or saving).

    This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its
YiYi Xu's avatar
YiYi Xu committed
121
122
    general usage and behavior.

Steven Liu's avatar
Steven Liu committed
123
124
    Inherent JAX features such as the following are supported:

YiYi Xu's avatar
YiYi Xu committed
125
126
127
128
129
130
131
132
133
134
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        sample_size (`int`, *optional*):
            The size of the input sample.
        in_channels (`int`, *optional*, defaults to 4):
            The number of channels in the input sample.
Steven Liu's avatar
Steven Liu committed
135
136
        down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`):
            The tuple of downsample blocks to use.
YiYi Xu's avatar
YiYi Xu committed
137
138
139
140
141
142
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
            The dimension of the attention heads.
143
144
        num_attention_heads (`int` or `Tuple[int]`, *optional*):
            The number of attention heads.
YiYi Xu's avatar
YiYi Xu committed
145
146
147
148
149
150
151
152
        cross_attention_dim (`int`, *optional*, defaults to 768):
            The dimension of the cross attention features.
        dropout (`float`, *optional*, defaults to 0):
            Dropout probability for down, up and bottleneck blocks.
        flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`):
Steven Liu's avatar
Steven Liu committed
153
            The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
YiYi Xu's avatar
YiYi Xu committed
154
        conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`):
Steven Liu's avatar
Steven Liu committed
155
            The tuple of output channel for each block in the `conditioning_embedding` layer.
YiYi Xu's avatar
YiYi Xu committed
156
    """
157

YiYi Xu's avatar
YiYi Xu committed
158
159
    sample_size: int = 32
    in_channels: int = 4
160
    down_block_types: Tuple[str, ...] = (
YiYi Xu's avatar
YiYi Xu committed
161
162
163
164
165
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "DownBlock2D",
    )
166
167
    only_cross_attention: Union[bool, Tuple[bool, ...]] = False
    block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280)
YiYi Xu's avatar
YiYi Xu committed
168
    layers_per_block: int = 2
169
170
    attention_head_dim: Union[int, Tuple[int, ...]] = 8
    num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None
YiYi Xu's avatar
YiYi Xu committed
171
172
173
174
175
176
177
    cross_attention_dim: int = 1280
    dropout: float = 0.0
    use_linear_projection: bool = False
    dtype: jnp.dtype = jnp.float32
    flip_sin_to_cos: bool = True
    freq_shift: int = 0
    controlnet_conditioning_channel_order: str = "rgb"
178
    conditioning_embedding_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
YiYi Xu's avatar
YiYi Xu committed
179

180
    def init_weights(self, rng: jax.Array) -> FrozenDict:
YiYi Xu's avatar
YiYi Xu committed
181
182
183
184
185
186
187
188
189
190
191
192
193
        # init input tensors
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)
        timesteps = jnp.ones((1,), dtype=jnp.int32)
        encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
        controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8)
        controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32)

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"]

194
    def setup(self) -> None:
Sayak Paul's avatar
Sayak Paul committed
195
196
197
198
199
        logger.warning(
            "Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
            "recommend migrating to PyTorch classes or pinning your version of Diffusers."
        )

YiYi Xu's avatar
YiYi Xu committed
200
201
202
        block_out_channels = self.block_out_channels
        time_embed_dim = block_out_channels[0] * 4

203
204
205
206
207
208
209
210
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = self.num_attention_heads or self.attention_head_dim

YiYi Xu's avatar
YiYi Xu committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        # input
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # time
        self.time_proj = FlaxTimesteps(
            block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
        )
        self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)

        self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding(
            conditioning_embedding_channels=block_out_channels[0],
            block_out_channels=self.conditioning_embedding_out_channels,
        )

        only_cross_attention = self.only_cross_attention
        if isinstance(only_cross_attention, bool):
            only_cross_attention = (only_cross_attention,) * len(self.down_block_types)

235
236
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(self.down_block_types)
YiYi Xu's avatar
YiYi Xu committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

        # down
        down_blocks = []
        controlnet_down_blocks = []

        output_channel = block_out_channels[0]

        controlnet_block = nn.Conv(
            output_channel,
            kernel_size=(1, 1),
            padding="VALID",
            kernel_init=nn.initializers.zeros_init(),
            bias_init=nn.initializers.zeros_init(),
            dtype=self.dtype,
        )
        controlnet_down_blocks.append(controlnet_block)

        for i, down_block_type in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            if down_block_type == "CrossAttnDownBlock2D":
                down_block = FlaxCrossAttnDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
265
                    num_attention_heads=num_attention_heads[i],
YiYi Xu's avatar
YiYi Xu committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                    add_downsample=not is_final_block,
                    use_linear_projection=self.use_linear_projection,
                    only_cross_attention=only_cross_attention[i],
                    dtype=self.dtype,
                )
            else:
                down_block = FlaxDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
                    add_downsample=not is_final_block,
                    dtype=self.dtype,
                )

            down_blocks.append(down_block)

            for _ in range(self.layers_per_block):
                controlnet_block = nn.Conv(
                    output_channel,
                    kernel_size=(1, 1),
                    padding="VALID",
                    kernel_init=nn.initializers.zeros_init(),
                    bias_init=nn.initializers.zeros_init(),
                    dtype=self.dtype,
                )
                controlnet_down_blocks.append(controlnet_block)

            if not is_final_block:
                controlnet_block = nn.Conv(
                    output_channel,
                    kernel_size=(1, 1),
                    padding="VALID",
                    kernel_init=nn.initializers.zeros_init(),
                    bias_init=nn.initializers.zeros_init(),
                    dtype=self.dtype,
                )
                controlnet_down_blocks.append(controlnet_block)

        self.down_blocks = down_blocks
        self.controlnet_down_blocks = controlnet_down_blocks

        # mid
        mid_block_channel = block_out_channels[-1]
        self.mid_block = FlaxUNetMidBlock2DCrossAttn(
            in_channels=mid_block_channel,
            dropout=self.dropout,
313
            num_attention_heads=num_attention_heads[-1],
YiYi Xu's avatar
YiYi Xu committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
            use_linear_projection=self.use_linear_projection,
            dtype=self.dtype,
        )

        self.controlnet_mid_block = nn.Conv(
            mid_block_channel,
            kernel_size=(1, 1),
            padding="VALID",
            kernel_init=nn.initializers.zeros_init(),
            bias_init=nn.initializers.zeros_init(),
            dtype=self.dtype,
        )

    def __call__(
        self,
329
330
331
332
        sample: jnp.ndarray,
        timesteps: Union[jnp.ndarray, float, int],
        encoder_hidden_states: jnp.ndarray,
        controlnet_cond: jnp.ndarray,
YiYi Xu's avatar
YiYi Xu committed
333
334
335
        conditioning_scale: float = 1.0,
        return_dict: bool = True,
        train: bool = False,
336
    ) -> Union[FlaxControlNetOutput, Tuple[Tuple[jnp.ndarray, ...], jnp.ndarray]]:
YiYi Xu's avatar
YiYi Xu committed
337
338
339
340
341
342
        r"""
        Args:
            sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
            timestep (`jnp.ndarray` or `float` or `int`): timesteps
            encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
            controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor
343
            conditioning_scale (`float`, *optional*, defaults to `1.0`): the scale factor for controlnet outputs
YiYi Xu's avatar
YiYi Xu committed
344
            return_dict (`bool`, *optional*, defaults to `True`):
345
346
                Whether or not to return a [`models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of
                a plain tuple.
YiYi Xu's avatar
YiYi Xu committed
347
348
349
350
            train (`bool`, *optional*, defaults to `False`):
                Use deterministic functions and disable dropout when not training.

        Returns:
351
            [`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
352
353
                [`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise
                a `tuple`. When returning a tuple, the first element is the sample tensor.
YiYi Xu's avatar
YiYi Xu committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        """
        channel_order = self.controlnet_conditioning_channel_order
        if channel_order == "bgr":
            controlnet_cond = jnp.flip(controlnet_cond, axis=1)

        # 1. time
        if not isinstance(timesteps, jnp.ndarray):
            timesteps = jnp.array([timesteps], dtype=jnp.int32)
        elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
            timesteps = timesteps.astype(dtype=jnp.float32)
            timesteps = jnp.expand_dims(timesteps, 0)

        t_emb = self.time_proj(timesteps)
        t_emb = self.time_embedding(t_emb)

        # 2. pre-process
        sample = jnp.transpose(sample, (0, 2, 3, 1))
        sample = self.conv_in(sample)

        controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1))
        controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
        sample += controlnet_cond

        # 3. down
        down_block_res_samples = (sample,)
        for down_block in self.down_blocks:
            if isinstance(down_block, FlaxCrossAttnDownBlock2D):
                sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
            else:
                sample, res_samples = down_block(sample, t_emb, deterministic=not train)
            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)

        # 5. contronet blocks
        controlnet_down_block_res_samples = ()
        for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
            down_block_res_sample = controlnet_block(down_block_res_sample)
            controlnet_down_block_res_samples += (down_block_res_sample,)

        down_block_res_samples = controlnet_down_block_res_samples

        mid_block_res_sample = self.controlnet_mid_block(sample)

        # 6. scaling
        down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
        mid_block_res_sample *= conditioning_scale

        if not return_dict:
            return (down_block_res_samples, mid_block_res_sample)

        return FlaxControlNetOutput(
            down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
        )