test_alt_diffusion_img2img.py 9.76 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import XLMRobertaTokenizer
Suraj Patil's avatar
Suraj Patil committed
23

YiYi Xu's avatar
YiYi Xu committed
24
25
26
27
28
29
30
from diffusers import (
    AltDiffusionImg2ImgPipeline,
    AutoencoderKL,
    PNDMScheduler,
    UNet2DConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
Suraj Patil's avatar
Suraj Patil committed
31
32
33
34
35
36
37
38
39
40
41
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
    RobertaSeriesConfig,
    RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu


torch.backends.cuda.matmul.allow_tf32 = False


42
class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=5006,
        )
        return RobertaSeriesModelWithTransformation(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_stable_diffusion_img2img_default_case(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )
YiYi Xu's avatar
YiYi Xu committed
137
        alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=False)
Suraj Patil's avatar
Suraj Patil committed
138
139
140
141
142
143
144
145
146
147
148
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = alt_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
149
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
150
151
152
153
154
155
156
157
158
159
160
        )

        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = alt_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
161
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
162
163
164
165
166
167
168
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
169
        expected_slice = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499])
170

171
172
        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
Suraj Patil's avatar
Suraj Patil committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_img2img_fp16(self):
        """Test that stable diffusion img2img works with fp16"""
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77

        init_image = self.dummy_image.to(torch_device)

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )
YiYi Xu's avatar
YiYi Xu committed
201
        alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=False)
Suraj Patil's avatar
Suraj Patil committed
202
203
204
205
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
206
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
207
208
209
210
211
        image = alt_pipe(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
212
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
213
214
215
216
        ).images

        assert image.shape == (1, 32, 32, 3)

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "BAAI/AltDiffusion"
        pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

237
        generator = torch.manual_seed(0)
238
239
240
241
242
243
244
245
246
247
248
249
250
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
251
252
        expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000])

253
254
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

Suraj Patil's avatar
Suraj Patil committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

@slow
@require_torch_gpu
class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_diffusion_img2img_pipeline_default(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy"
        )

        model_id = "BAAI/AltDiffusion"
        pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

286
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
287
288
        output = pipe(
            prompt=prompt,
289
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
290
291
292
293
294
295
296
297
298
299
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).max() < 1e-3