utils.py 82.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
UmerHA's avatar
UmerHA committed
18
from itertools import product
19
20
21

import numpy as np
import torch
22
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
23
24
25
26

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
27
    FlowMatchEulerDiscreteScheduler,
28
    LCMScheduler,
29
    SD3Transformer2DModel,
30
31
32
33
34
35
36
    UNet2DConditionModel,
)
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
    floats_tensor,
    require_peft_backend,
    require_peft_version_greater,
37
    skip_mps,
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    torch_device,
)


if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


@require_peft_backend
class PeftLoraLoaderMixinTests:
    pipeline_class = None
    scheduler_cls = None
    scheduler_kwargs = None
    has_two_text_encoders = False
76
    has_three_text_encoders = False
77
    unet_kwargs = None
78
    transformer_kwargs = None
79
80
    vae_kwargs = None

81
    def get_dummy_components(self, scheduler_cls=None, use_dora=False):
82
83
84
85
86
        if self.unet_kwargs and self.transformer_kwargs:
            raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.")
        if self.has_two_text_encoders and self.has_three_text_encoders:
            raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.")

87
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
88
89
90
        rank = 4

        torch.manual_seed(0)
91
92
93
94
        if self.unet_kwargs is not None:
            unet = UNet2DConditionModel(**self.unet_kwargs)
        else:
            transformer = SD3Transformer2DModel(**self.transformer_kwargs)
95
96
97
98
99
100

        scheduler = scheduler_cls(**self.scheduler_kwargs)

        torch.manual_seed(0)
        vae = AutoencoderKL(**self.vae_kwargs)

101
102
103
        if not self.has_three_text_encoders:
            text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
            tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
104
105
106
107
108

        if self.has_two_text_encoders:
            text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
            tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

109
110
111
112
113
114
115
116
        if self.has_three_text_encoders:
            tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
            tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
            tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
            text_encoder = CLIPTextModelWithProjection.from_pretrained("hf-internal-testing/tiny-sd3-text_encoder")
            text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("hf-internal-testing/tiny-sd3-text_encoder-2")
            text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

117
118
119
120
121
        text_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
            init_lora_weights=False,
122
            use_dora=use_dora,
123
124
        )

125
        denoiser_lora_config = LoraConfig(
126
127
128
129
130
            r=rank,
            lora_alpha=rank,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
131
132
        )

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        if self.has_two_text_encoders or self.has_three_text_encoders:
            if self.unet_kwargs is not None:
                pipeline_components = {
                    "unet": unet,
                    "scheduler": scheduler,
                    "vae": vae,
                    "text_encoder": text_encoder,
                    "tokenizer": tokenizer,
                    "text_encoder_2": text_encoder_2,
                    "tokenizer_2": tokenizer_2,
                    "image_encoder": None,
                    "feature_extractor": None,
                }
            elif self.has_three_text_encoders and self.transformer_kwargs is not None:
                pipeline_components = {
                    "transformer": transformer,
                    "scheduler": scheduler,
                    "vae": vae,
                    "text_encoder": text_encoder,
                    "tokenizer": tokenizer,
                    "text_encoder_2": text_encoder_2,
                    "tokenizer_2": tokenizer_2,
                    "text_encoder_3": text_encoder_3,
                    "tokenizer_3": tokenizer_3,
                }
158
159
160
161
162
163
164
165
166
167
168
169
        else:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "safety_checker": None,
                "feature_extractor": None,
                "image_encoder": None,
            }

170
        return pipeline_components, text_lora_config, denoiser_lora_config
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

193
    # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
194
195
196
197
198
199
200
201
202
203
204
205
206
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
207
208
209
210
211
212
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
213
214
215
216
217
218
219
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            _, _, inputs = self.get_dummy_inputs()
            output_no_lora = pipe(**inputs).images
220
221
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
222
223
224
225
226
227

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
228
229
230
231
232
233
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
234
235
236
237
238
239
240
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
241
242
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
243
244
245
246

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

247
            if self.has_two_text_encoders or self.has_three_text_encoders:
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
263
264
265
266
267
268
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
269
270
271
272
273
274
275
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
276
277
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
278
279
280
281

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

282
            if self.has_two_text_encoders or self.has_three_text_encoders:
283
284
285
286
287
288
289
290
291
292
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

293
294
295
296
297
298
299
300
            if self.unet_kwargs is not None:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
                ).images
            else:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.5}
                ).images
301
302
303
304
305
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

306
307
308
309
310
311
312
313
            if self.unet_kwargs is not None:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
                ).images
            else:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.0}
                ).images
314
315
316
317
318
319
320
321
322
323
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
324
325
326
327
328
329
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
330
331
332
333
334
335
336
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
337
338
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
339
340
341
342

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

343
            if self.has_two_text_encoders or self.has_three_text_encoders:
344
345
346
347
348
349
350
351
352
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

353
            if self.has_two_text_encoders or self.has_three_text_encoders:
354
355
356
357
358
359
360
361
362
363
364
365
366
367
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
368
369
370
371
372
373
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
374
375
376
377
378
379
380
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
381
382
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
383
384
385
386

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

387
            if self.has_two_text_encoders or self.has_three_text_encoders:
388
389
390
391
392
393
394
395
396
397
398
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )

399
            if self.has_two_text_encoders or self.has_three_text_encoders:
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
                self.assertFalse(
                    check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
415
416
417
418
419
420
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
421
422
423
424
425
426
427
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
428
429
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
430
431
432
433

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

434
            if self.has_two_text_encoders or self.has_three_text_encoders:
435
436
437
438
439
440
441
442
443
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
444
                if self.has_two_text_encoders or self.has_three_text_encoders:
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        safe_serialization=False,
                    )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

468
            if self.has_two_text_encoders or self.has_three_text_encoders:
469
470
471
472
473
474
475
476
477
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

478
479
480
481
482
483
    def test_simple_inference_with_partial_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        with different ranks and some adapters removed
        and makes sure it works as expected
        """
484
485
486
487
488
489
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
490
            components, _, _ = self.get_dummy_components(scheduler_cls)
491
            # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324).
492
493
494
495
496
497
498
499
500
501
502
503
504
505
            text_lora_config = LoraConfig(
                r=4,
                rank_pattern={"q_proj": 1, "k_proj": 2, "v_proj": 3},
                lora_alpha=4,
                target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
                init_lora_weights=False,
                use_dora=False,
            )
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
506
507
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
508
509
510
511
512
513
514
515
516
517
518

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
            # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder`
            # supports missing layers (PR#8324).
            state_dict = {
                f"text_encoder.{module_name}": param
                for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items()
                if "text_model.encoder.layers.4" not in module_name
            }

519
            if self.has_two_text_encoders or self.has_three_text_encoders:
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
                state_dict.update(
                    {
                        f"text_encoder_2.{module_name}": param
                        for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
                        if "text_model.encoder.layers.4" not in module_name
                    }
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

            # Unload lora and load it back using the pipe.load_lora_weights machinery
            pipe.unload_lora_weights()
            pipe.load_lora_weights(state_dict)

            output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3),
                "Removing adapters should change the output",
            )

547
548
549
550
    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
551
552
553
554
555
556
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
557
558
559
560
561
562
563
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
564
565
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
566
567
568
569

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

570
            if self.has_two_text_encoders or self.has_three_text_encoders:
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)

                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(torch_device)

            self.assertTrue(
                check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
            )

589
            if self.has_two_text_encoders or self.has_three_text_encoders:
590
591
592
593
594
595
596
597
598
599
600
601
                self.assertTrue(
                    check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                    "Lora not correctly set in text encoder 2",
                )

            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

602
    def test_simple_inference_with_text_denoiser_lora_save_load(self):
603
604
605
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
606
607
608
609
610
611
612
613
614
615
616
617
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
618
619
620
621
622
623
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
624
625
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
626
627

            pipe.text_encoder.add_adapter(text_lora_config)
628
629
630
631
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
632
633

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
634
635
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in Unet")
636

637
            if self.has_two_text_encoders or self.has_three_text_encoders:
638
639
640
641
642
643
644
645
646
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
647
648
649
650
651
652
653

                if self.unet_kwargs is not None:
                    denoiser_state_dict = get_peft_model_state_dict(pipe.unet)
                else:
                    denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)

                if self.has_two_text_encoders or self.has_three_text_encoders:
654
655
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
                    if self.unet_kwargs is not None:
                        self.pipeline_class.save_lora_weights(
                            save_directory=tmpdirname,
                            text_encoder_lora_layers=text_encoder_state_dict,
                            text_encoder_2_lora_layers=text_encoder_2_state_dict,
                            unet_lora_layers=denoiser_state_dict,
                            safe_serialization=False,
                        )
                    else:
                        self.pipeline_class.save_lora_weights(
                            save_directory=tmpdirname,
                            text_encoder_lora_layers=text_encoder_state_dict,
                            text_encoder_2_lora_layers=text_encoder_2_state_dict,
                            transformer_lora_layers=denoiser_state_dict,
                            safe_serialization=False,
                        )
672
673
674
675
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
676
                        unet_lora_layers=denoiser_state_dict,
677
678
679
680
681
682
683
684
685
686
                        safe_serialization=False,
                    )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
687
688
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
689

690
            if self.has_two_text_encoders or self.has_three_text_encoders:
691
692
693
694
695
696
697
698
699
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

700
    def test_simple_inference_with_text_denoiser_lora_and_scale(self):
701
702
703
704
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
705
706
707
708
709
710
711
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
712
713
714
715
716
717
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
718
719
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
720
721

            pipe.text_encoder.add_adapter(text_lora_config)
722
723
724
725
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
726
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
727
728
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
729

730
            if self.has_two_text_encoders or self.has_three_text_encoders:
731
732
733
734
735
736
737
738
739
740
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

741
742
743
744
745
746
747
748
            if self.unet_kwargs is not None:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
                ).images
            else:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.5}
                ).images
749
750
751
752
753
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

754
755
756
757
758
759
760
761
            if self.unet_kwargs is not None:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
                ).images
            else:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.0}
                ).images
762
763
764
765
766
767
768
769
770
771
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

            self.assertTrue(
                pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                "The scaling parameter has not been correctly restored!",
            )

772
    def test_simple_inference_with_text_lora_denoiser_fused(self):
773
774
775
776
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
777
778
779
780
781
782
783
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
784
785
786
787
788
789
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
790
791
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
792
793

            pipe.text_encoder.add_adapter(text_lora_config)
794
795
796
797
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
798
799

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
800
801
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
802

803
            if self.has_two_text_encoders or self.has_three_text_encoders:
804
805
806
807
808
809
810
811
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
812
813
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
814

815
            if self.has_two_text_encoders or self.has_three_text_encoders:
816
817
818
819
820
821
822
823
824
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

825
    def test_simple_inference_with_text_denoiser_lora_unloaded(self):
826
827
828
829
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
830
831
832
833
834
835
836
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
837
838
839
840
841
842
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
843
844
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
845
846

            pipe.text_encoder.add_adapter(text_lora_config)
847
848
849
850
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
851
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
852
853
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
854

855
            if self.has_two_text_encoders or self.has_three_text_encoders:
856
857
858
859
860
861
862
863
864
865
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )
866
867
868
869
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertFalse(
                check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly unloaded in denoiser"
            )
870

871
            if self.has_two_text_encoders or self.has_three_text_encoders:
872
873
874
875
876
877
878
879
880
881
882
                self.assertFalse(
                    check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

883
    def test_simple_inference_with_text_denoiser_lora_unfused(self):
884
885
886
887
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
888
889
890
891
892
893
894
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
895
896
897
898
899
900
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config)
901
902
903
904
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
905
906

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
907
908
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
909

910
            if self.has_two_text_encoders or self.has_three_text_encoders:
911
912
913
914
915
916
917
918
919
920
921
922
923
924
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.fuse_lora()

            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.unfuse_lora()

            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            # unloading should remove the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")
925
926
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Unfuse should still keep LoRA layers")
927

928
            if self.has_two_text_encoders or self.has_three_text_encoders:
929
930
931
932
933
934
935
936
937
938
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                )

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
                np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

939
    def test_simple_inference_with_text_denoiser_multi_adapter(self):
940
941
942
943
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
944
945
946
947
948
949
950
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
951
952
953
954
955
956
957
958
959
960
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

961
962
963
964
965
966
967
968
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
969
970

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
971
972
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
973

974
            if self.has_two_text_encoders or self.has_three_text_encoders:
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()

            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1017
    def test_simple_inference_with_text_denoiser_block_scale(self):
UmerHA's avatar
UmerHA committed
1018
1019
1020
1021
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        one adapter and set differnt weights for different blocks (i.e. block lora)
        """
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
            return

        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1032
1033
1034
1035
1036
1037
1038
1039
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1040
1041
1042
1043
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1044
1045

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1046
1047
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
UmerHA's avatar
UmerHA committed
1048

1049
            if self.has_two_text_encoders or self.has_three_text_encoders:
UmerHA's avatar
UmerHA committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
            pipe.set_adapters("adapter-1", weights_1)
            output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            weights_2 = {"unet": {"up": 5}}
            pipe.set_adapters("adapter-1", weights_2)
            output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3),
                "LoRA weights 1 and 2 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 1 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 2 should give different results",
            )

            pipe.disable_lora()
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1084
    def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
UmerHA's avatar
UmerHA committed
1085
1086
1087
1088
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set differnt weights for different blocks (i.e. block lora)
        """
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
            return

        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1109
1110
1111
1112
1113
1114
1115
1116
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
UmerHA's avatar
UmerHA committed
1117
1118

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1119
1120
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
UmerHA's avatar
UmerHA committed
1121

1122
            if self.has_two_text_encoders or self.has_three_text_encoders:
UmerHA's avatar
UmerHA committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
            scales_2 = {"unet": {"down": 5, "mid": 5}}
            pipe.set_adapters("adapter-1", scales_1)

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2", scales_2)
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()

            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            # a mismatching number of adapter_names and adapter_weights should raise an error
            with self.assertRaises(ValueError):
                pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1])

1171
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
UmerHA's avatar
UmerHA committed
1172
        """Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""
1173
1174
        if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
            return
UmerHA's avatar
UmerHA committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

        def updown_options(blocks_with_tf, layers_per_block, value):
            """
            Generate every possible combination for how a lora weight dict for the up/down part can be.
            E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ...
            """
            num_val = value
            list_val = [value] * layers_per_block

            node_opts = [None, num_val, list_val]
            node_opts_foreach_block = [node_opts] * len(blocks_with_tf)

            updown_opts = [num_val]
            for nodes in product(*node_opts_foreach_block):
                if all(n is None for n in nodes):
                    continue
                opt = {}
                for b, n in zip(blocks_with_tf, nodes):
                    if n is not None:
                        opt["block_" + str(b)] = n
                updown_opts.append(opt)
            return updown_opts

        def all_possible_dict_opts(unet, value):
            """
            Generate every possible combination for how a lora weight dict can be.
            E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ...
            """

            down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")]
            up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")]

            layers_per_block = unet.config.layers_per_block

            text_encoder_opts = [None, value]
            text_encoder_2_opts = [None, value]
            mid_opts = [None, value]
            down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value)
            up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value)

            opts = []

            for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts):
                if all(o is None for o in (t1, t2, d, m, u)):
                    continue
                opt = {}
                if t1 is not None:
                    opt["text_encoder"] = t1
                if t2 is not None:
                    opt["text_encoder_2"] = t2
                if all(o is None for o in (d, m, u)):
                    # no unet scaling
                    continue
                opt["unet"] = {}
                if d is not None:
                    opt["unet"]["down"] = d
                if m is not None:
                    opt["unet"]["mid"] = m
                if u is not None:
                    opt["unet"]["up"] = u
                opts.append(opt)

            return opts

1239
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls)
UmerHA's avatar
UmerHA committed
1240
1241
1242
1243
1244
1245
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1246
1247
1248
1249
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1250

1251
        if self.has_two_text_encoders or self.has_three_text_encoders:
UmerHA's avatar
UmerHA committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
            pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")

        for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
            # test if lora block scales can be set with this scale_dict
            if not self.has_two_text_encoders and "text_encoder_2" in scale_dict:
                del scale_dict["text_encoder_2"]

            pipe.set_adapters("adapter-1", scale_dict)  # test will fail if this line throws an error

1261
    def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self):
1262
1263
1264
1265
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
1266
1267
1268
1269
1270
1271
1272
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1283
1284
1285
1286
1287
1288
1289
1290
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1291
1292

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1293
1294
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1295

1296
            if self.has_two_text_encoders or self.has_three_text_encoders:
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1348
1349
1350
1351
1352
1353
1354
1355
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1367
    def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self):
1368
1369
1370
1371
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
1372
1373
1374
1375
1376
1377
1378
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1389
1390
1391
1392
1393
1394
1395
1396
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1397
1398

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1399
1400
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1401

1402
            if self.has_two_text_encoders or self.has_three_text_encoders:
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )

            pipe.disable_lora()

            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1453
    @skip_mps
1454
    def test_lora_fuse_nan(self):
1455
1456
1457
1458
1459
1460
1461
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1462
1463
1464
1465
1466
1467
1468
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")

1469
1470
1471
1472
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1473
1474

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1475
1476
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1477
1478
1479

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
1480
1481
1482
1483
1484
1485
                if self.unet_kwargs:
                    pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[
                        "adapter-1"
                    ].weight += float("inf")
                else:
                    pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
                pipe.fuse_lora(safe_fusing=True)

            # without we should not see an error, but every image will be black
            pipe.fuse_lora(safe_fusing=False)

            out = pipe("test", num_inference_steps=2, output_type="np").images

            self.assertTrue(np.isnan(out).all())

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
1503
1504
1505
1506
1507
1508
1509
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1510
1511
1512
1513
1514
1515
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1516
1517
1518
1519
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1520
1521
1522
1523
1524

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1525
1526
1527
1528
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])

            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
1541
1542
1543
1544
1545
1546
1547
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1548
1549
1550
1551
1552
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1553
1554
1555
1556
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1557
1558

            adapter_names = pipe.get_list_adapters()
1559
1560
1561
1562
1563
1564
            dicts_to_be_checked = {"text_encoder": ["adapter-1"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1"]})
            self.assertDictEqual(adapter_names, dicts_to_be_checked)
1565
1566

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1567
1568
1569
1570
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1571
1572

            adapter_names = pipe.get_list_adapters()
1573
1574
1575
1576
1577
1578
            dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
            self.assertDictEqual(adapter_names, dicts_to_be_checked)
1579
1580

            pipe.set_adapters(["adapter-1", "adapter-2"])
1581
1582
1583
1584
1585
            dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
1586
1587
            self.assertDictEqual(
                pipe.get_list_adapters(),
1588
                dicts_to_be_checked,
1589
1590
            )

1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-3")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3")

            dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]})
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)
1602
1603

    @require_peft_version_greater(peft_version="0.6.2")
1604
    def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
1605
1606
1607
1608
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
1609
1610
1611
1612
1613
1614
1615
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1616
1617
1618
1619
1620
1621
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
1622
1623
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_lora.shape == shape_to_be_checked)
1624
1625

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1626
1627
1628
1629
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1630
1631
1632

            # Attach a second adapter
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1633
1634
1635
1636
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1637
1638

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1639
1640
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1641

1642
            if self.has_two_text_encoders or self.has_three_text_encoders:
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
            ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1"])
            ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.fuse_lora(adapter_names=["adapter-1"])

            # Fusing should still keep the LoRA layers so outpout should remain the same
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3),
                "Fused lora should not change the output",
            )

            pipe.unfuse_lora()
            pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"])

            # Fusing should still keep the LoRA layers
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should not change the output",
            )

1676
1677
    @require_peft_version_greater(peft_version="0.9.0")
    def test_simple_inference_with_dora(self):
1678
1679
1680
1681
1682
1683
1684
1685
1686
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
                scheduler_cls, use_dora=True
            )
1687
1688
1689
1690
1691
1692
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
1693
1694
            shape_to_be_checked = (1, 64, 64, 3) if self.unet_kwargs is not None else (1, 32, 32, 3)
            self.assertTrue(output_no_dora_lora.shape == shape_to_be_checked)
1695
1696

            pipe.text_encoder.add_adapter(text_lora_config)
1697
1698
1699
1700
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
1701
1702

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1703
1704
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1705

1706
            if self.has_two_text_encoders or self.has_three_text_encoders:
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
                "DoRA lora should change the output",
            )

1719
    @unittest.skip("This is failing for now - need to investigate")
1720
    def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self):
1721
1722
1723
1724
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
1725
1726
1727
1728
1729
1730
1731
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1732
1733
1734
1735
1736
1737
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config)
1738
1739
1740
1741
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
1742
1743

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1744
1745
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1746

1747
            if self.has_two_text_encoders or self.has_three_text_encoders:
1748
1749
1750
1751
1752
1753
1754
1755
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

1756
            if self.has_two_text_encoders or self.has_three_text_encoders:
1757
1758
1759
1760
1761
1762
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)

            # Just makes sure it works..
            _ = pipe(**inputs, generator=torch.manual_seed(0)).images

    def test_modify_padding_mode(self):
1763
1764
1765
        if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
            return

1766
1767
1768
1769
1770
        def set_pad_mode(network, mode="circular"):
            for _, module in network.named_modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = mode

1771
1772
1773
1774
1775
1776
        scheduler_classes = (
            [FlowMatchEulerDiscreteScheduler]
            if self.has_three_text_encoders and self.transformer_kwargs
            else [DDIMScheduler, LCMScheduler]
        )
        for scheduler_cls in scheduler_classes:
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
            components, _, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _pad_mode = "circular"
            set_pad_mode(pipe.vae, _pad_mode)
            set_pad_mode(pipe.unet, _pad_mode)

            _, _, inputs = self.get_dummy_inputs()
            _ = pipe(**inputs).images